铌硅钢 70.63 22.58 1.51 0.17 6.90 γ-铌硅钢 32.99 25.64 34.36 6.65 1.02 α-铌硅钢 47.92 13.66 35.22 2.95 0.24
腐蚀是限制金属材料寿命的主要因素,由于控制钝化的金属-液体界面处的薄氧化膜极难研究,因此很难从根本上了解其控制机理和表面过程。在这项工作中,我们结合同步加速器技术和电化学方法来研究 Ni-Cr-Mo 合金的钝化膜击穿,该合金在很多工业应用中都有使用。我们发现该合金对氧析出反应 (OER) 具有活性,OER 的开始与钝化的丧失和严重的金属溶解同时发生。OER 机制涉及氧化膜中 Mo 4 + 位点的氧化为可溶解的 Mo 6 +,从而导致钝化击穿。这与典型的含 Cr 合金的跨钝化击穿有着根本的不同,在含 Cr 合金中,Cr 6 + 被认为在高阳极电位下溶解,但本文并未观察到这种现象。在高电流密度下,OER 还会导致表面附近溶液酸化,进一步引发金属溶解。由于 Ni-Cr-Mo 合金具有催化活性,OER 在其钝化破坏机制中起着重要作用,在研究催化活性合金的腐蚀时需要考虑这种影响。
: 对于经济有效地驱动OER,研制出耐用的电催化剂至关重要。[5–9] 为了应对这一挑战,最近,基于非贵重过渡金属(TM:Fe、Co、Ni、Mn)的金属间化合物由于其低电阻率、可调的成分和独特的晶体结构而受到了特别的关注。[10–15] 目前对基于金属间化合物的OER电催化剂的研究集中在合金化TM和准金属(例如,B、Si、Ge、As)或贫金属(例如,Al、Ga、Sn、Bi)。[16–25] 在这些金属间化合物中,TM物质严格地原位转化为活性TM(氧)氢氧化物,而非金属在碱性OER过程中大部分从结构中浸出,导致活性纳米域的形成,从而增强催化活性。 [17,18] 此外,在大多数情况下,虽然块体金属间化合物的表面会经历重构,但其内部仍能很好地保留,从而形成具有高导电性的独特核壳结构。[21] 另外,金属间化合物也可以根据结构中非金属的尺寸和类型在施加的OER电位下完全转变,形成多孔的块体活性催化剂。[15] 尽管已经取得了令人瞩目的进展,但块体金属间化合物的转变速度比块体金属间化合物快得多。
本期特刊涵盖了可再生能源转换和存储、传感和电催化剂技术的最新进展。因此,我们诚邀有关科学进展、新发现、案例研究、评论以及分析和数值模拟的论文,重点介绍用于能源存储和转换设备的新型纳米材料的发展,包括但不限于: - 先进的可充电电池和超越锂离子电池:金属离子、金属空气和氧化还原液流电池; - 超级电容器和混合电容器和超级电容器; - 电催化、氧还原反应、氧析出反应、氢析出反应; - 能量转换装置:燃料电池、水电解器、微生物燃料电池; - 化学能存储:氢气的生成和存储以及二氧化碳的减排; - 绿色能源:可再生能源、高效能源、效率测量、改进和优化方法; - 热电和热电化学电池; - 压电和自充电/放电装置。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
氢气(H2)具有高能量密度和燃烧后零二氧化碳(CO2)排放的特点,是最有前途的清洁能源之一。1,2如今,通过电化学水分解生产氢气可以有效地减少环境污染和能源消耗,被广泛认为是一种很有前途的碳中和技术。3 – 6水电解包括氢析出反应(HER)和氧析出反应(OER),可以在碱性或酸性条件下进行。7 – 9而工业兼容的大规模氢气生产基于碱性水电解。10 – 13然而,碱性HER比酸性介质中的HER更缓慢,需要相当大的能量来打破HO-H键以产生质子。14 – 17因此,开发高效的电催化剂来增强水解离和氢解吸是非常可取的。18,19
化石燃料消耗的不断增长加上全球对环境的担忧迫使人们快速发展可持续能源。[1] 为了克服这一严峻形势,人们投入了巨大的努力来探索电化学转换和存储装置,如水分解、氮和二氧化碳的电化学还原、燃料电池、可充电电池和电合成技术。[2] 其中,水分解尤其令人感兴趣,因为它可以与可再生风能和太阳能轻松结合,生产高纯度的氢燃料。[3,4] 然而,水分解的氢析出反应 (HER) 和氧析出反应 (OER) 在热力学上都是上坡形且动力学缓慢,这不可避免地降低了整体的能源效率。[5] 为了解决这个问题,高效的电催化剂对于降低能量壁垒和加速 OER 和 HER 反应是必不可少的。目前,许多过渡金属基化合物已被证明是水分解的有前途的电催化剂。 [6]
Inconel 718 的定向能量沉积 (DED) 对于航空航天部件的修复至关重要,因为这些部件的认证公差很严格,特别是机械性能。在 DED 制造的 Inconel 718 部件中,硬度变化很大,这表明机械性能发生了变化,必须了解这些变化,以便消除这种变化或根据监管指导在设计中实施。在这项研究中,γ ʹ 析出被认为是整个部件硬度变化的原因,尽管 Inconel 718 传统上被视为 γ ʺ 强化合金。发现基于移动热源的简单析出电位模型与测得的硬度相关,并解释观察到的硬度分布。此外,研究表明,临界厚度小于 2 mm 的截面在竣工条件下永远不会达到峰值硬度。这种理解有助于开发用于微观结构的原位热处理策略,从而优化机械性能,这对于后处理步骤有限的修复技术是必要的。
摘要 高熵材料因其结构的复杂性和性能的优越性已被广泛证实是一种可能的先进电催化剂。人们已做出大量努力来模拟高熵催化剂的原子级细节,以提高自下而上设计先进电催化剂的可行性。在本综述中,首先,我们概述了基于密度泛函理论的各种建模方法的发展。我们回顾了用于模拟不同高熵电催化剂的密度泛函理论模拟的进展。然后,我们回顾了用于电催化应用的高熵材料模拟的进展。最后,我们展示了该领域的前景。缩写:HEMs:高熵材料;CCMs:成分复合材料;DFT:密度泛函理论;LDA:局部密度近似;GGA:广义梯度近似;VASP:维也纳从头算模拟软件包;ECP:有效核势; PAW:投影增强波势;VCA:虚拟晶体近似;CPA:相干势近似;SQS:特殊准随机结构;SSOS:小集有序结构;SLAE:相似的局部原子环境;HEA:高熵合金;FCC:面心立方;BCC:体心立方;HCP:六方密堆积;ORR:氧还原反应;OER:氧化物析出反应;HER:氢析出反应;RDS:限速步骤;AEM:吸附质析出机理;LOM:晶格氧氧化机理;HEOs:高熵氧化物;OVs:氧空位;PDOS:投影态密度;ADR:氨分解反应;NRR:氮还原反应;CO 2 RR:CO 2 还原反应;TMDC:过渡金属二硫属化物;TM:过渡金属; AOR:酒精氧化反应;GOR:甘油氧化反应;UOR:尿素氧化反应;HEI:高熵金属间化合物。
氧析出反应 (OER) 是所有使用水作为氢源的反应(如氢析出和电化学 CO 2 还原)的关键元素,而提供 OER 电催化剂上高活性位点的新型设计原理突破了它们实际应用的极限。本文证明了金簇负载在单层剥离层状双氢氧化物 (ULDH) 电催化剂上用于 OER 以在金簇和 ULDH 之间制造异质界面作为活性位点,同时伴随着活性位点氧化态的调节和界面直接 O O 偶联(“界面 DOOC”)。负载金簇的 ULDH 对 OER 表现出优异的活性,在 10 mA cm −2 时的过电位为 189 mV。 X射线吸收精细结构测量表明,从金团簇到超低分子量聚乙烯的电荷转移改变了三价金属离子的氧化态,而这些离子可以作为超低分子量聚乙烯上的活性位点。本研究采用高灵敏度的反射吸收红外光谱和调制激发光谱以及密度泛函理论计算相结合的光谱技术,表明金团簇和超低分子量聚乙烯界面处的活性位点通过界面DOOC促进了一种新的OER机制,从而实现了优异的催化性能。