(1) 参与者将被分配到以下轨道之一:软件工程、用户界面/用户体验设计、平台工程师或产品管理。第一阶段包括为期四到五个月的技术加速器(又称技术训练营),以培养所选轨道的基础技能。在第二阶段,产品团队在队列中组建,每个参与者与主题专家配对,以进一步发展第一阶段建立的基础技能。团队使用敏捷软件开发流程和以士兵为中心的设计,通过全栈开发确定范围并解决现有的陆军问题。此阶段在达到获得 ASI 的标准后完成。第二阶段的结束也标志着用于计算服务义务(如适用)的计划的正式“学徒培训部分”的结束。这将启动第三阶段,参与者将他们的技能掌握从“初级”提升到“高级”,利用应用团队合作解决陆军问题,并根据需要进行迭代。此阶段将包括与行业和/或学术界的合作。第三阶段还可能包括在当地行业合作伙伴处进行短期实习。
摘要:桥梁是战略基础设施,在其一生中会降解。因此,结构性健康监测已成为该领域的重要工具,以推动维护活动。依赖有线传感器的常规振动监视系统对大量结构的连续监视项目提出了一些局限性。在这项工作中,为桥梁模态识别而开发了一个智能无线监视系统,目的是为该场中的有线传感器提供替代工具。设计的无线加速度计的主要特点是低成本,在结构上的易于安装以及使用能量收集技术赋予的长期自主权。为了评估其测量性性能,安装了一些原型用于在铁路桥上进行场测试,并获取了显着的数据。通过处理收集的数据,估计了桥梁的主要固有频率,并且它们的值与传统系统获得的参考文献非常吻合。对开发解决方案的评估为许多桥梁的仪器铺平了道路,目的是使用简单的诊断指标进行连续监测活动,例如时间频率的变化。
固体电解质有可能提高电池安全性,但可以使电池回收工作复杂化。将固态电池(SSB)解构为物理分离的阴极和固体电解质颗粒,与回收材料的阴极和分离器的再制造也保持密集。,直接从SSB中回收阴极的挑战也是一个重大挑战,正如针对具有液体电解质的电池所使用的。为了应对这一挑战,我们设计了超分子有机离子(猎户座)电解质,它们是电池运行温度下的粘弹性固体(–40至45°C),但粘弹性液体是100°C以上的粘弹性液体,这既可以使高质量SSB的制造既可以在末端的摩托车中恢复过来。我们成功的关键是使用多重Zwitterion小分子,它们将其网络锂盐或溶剂化为具有可调的粘弹性和离子电导率高达0.6 ms cm –1的超浓缩固体电解质,在45°C下。SSB与LI金属阳极以及LFP或NMC阴极一起实施猎户座电解质,在45°C下以数百个周期进行数百个周期,而100个周期后的容量较小。使用低温溶剂工艺,我们从电解质中分离了阴极,并证明翻新的细胞恢复了其初始容量的90%,并以另外的100个循环持续,其第二寿命的能力保留了84%。
摘要:精确的纳米结构几何形状使纳米传感器能够将光学生物分子传递到活细胞内环境,这对于精确的生物和临床治疗非常有吸引力。然而,由于缺乏设计指南来避免光学力和金属纳米传感器在传递过程中产生的光热之间的固有冲突,利用纳米传感器通过膜屏障进行光学传递仍然很困难。在这里,我们进行了一项数值研究,报告了通过设计纳米结构几何形状来显著增强纳米传感器的光学穿透性,以最小化光热产生以穿透膜屏障。我们表明,通过改变纳米传感器的几何形状,可以最大化穿透深度,同时可以最小化穿透过程中产生的热量。我们通过理论分析证明了角旋转纳米传感器对膜屏障产生的横向应力的影响。此外,我们表明,通过改变纳米传感器的几何形状,最大化纳米颗粒-膜界面处的局部应力场使光学穿透过程增强了四倍。由于其高效率和稳定性,我们预计纳米传感器到特定细胞内位置的精确光学穿透将有利于生物和治疗应用。
摘要:无论在国防还是民用领域,都需要对远距离水下目标进行准确、快速的识别。然而,数据缺乏、舰船工况等因素会显著影响水下声目标识别(UATR)系统的性能。由于海洋环境非常复杂,UATR严重依赖于特征工程,人工提取的特征在统计模型中偶尔会失效。本文提出了一种基于卷积神经网络和注意力机制的端到端UATR模型。该网络模型以原始时域数据为输入,结合残差神经网络和密连接卷积神经网络,充分利用两者的优势。在此基础上,加入通道注意机制和时间注意机制,提取通道维度和时间维度上的信息。经过对实测的四种舰船辐射噪声数据集进行实验,结果表明,所提方法在不同工况下均获得了97.69%的最高正确识别率,优于其他深度学习方法。
疟疾仍然是全世界最常见的传染病之一,世界 40% 以上的人口生活在疟疾流行地区(世界卫生组织,2021 年)。2020 年,疟疾病例超过 2 亿,死亡人数超过 60 万,主要由两种疟原虫引起,即恶性疟原虫和间日疟原虫(世界卫生组织,2021 年)。其中,恶性疟原虫占人类感染病例的 90% 以上,是全球沉重的健康负担。这些病例对发展中国家的影响尤为严重,19 个非洲国家和印度承担了 85% 的疟疾负担。此外,大多数死亡病例发生在 5 岁以下儿童中。疟疾预防工作的成功与否参半。使用杀虫剂处理过的蚊帐可有效降低寄生虫患病率和儿童死亡率,并已成为疟疾控制计划的核心内容(Pryce 等人,2018 年)。然而,疫苗的研发取得了有限的成功,最近批准的 RTS,S 疫苗 (Mosquirix ™) 显示出有限的效果,使儿童临床疟疾发病率降低了 26-38%(Morrison,2015 年)。由于缺乏高效疫苗,疟疾管理目前依赖于小分子抗疟药物,这些药物可以快速有效地治疗活动性
在域内领域内的沟通环境有限,因此需要使用自主权和自动化目标识别(ATR),以便允许无人车辆在没有操作员的情况下做出可行的决定[1] - [3]。水下环境特性使声传感器成为开发自主系统的最重要的传感器工具,如车辆协调[4]和水下大满贯[5]所示。但是,相同的荒凉环境使得用于机器学习算法的大型数据集的收集变得难以正确训练基于机器学习的算法。因此,在基于侧扫声纳图像运行的训练自主系统中使用了具有声学精确的数据[6] - [9]。生成模拟数据的一种方法是使用基于物理学的声学建模,以模拟声音传播和原始声纳数据收集[10],[11]。这具有捕获声纳数据的低级细微差别以生成声纳图像的好处,但这些模型通常很复杂且计算昂贵。另一种方法是近似将
去识别化是应用于数据集的过程,目的是防止或限制个人、受保护群体和机构的信息风险,同时仍允许进行有意义的统计分析。政府机构可以使用去识别化来降低与收集、处理、存档、分发或发布政府数据相关的隐私风险。此前,NISTIR 8053《个人信息的去识别化》[51] 对去识别化和重新识别化技术进行了调查。本文件为希望使用去识别化的政府机构提供了具体指导。在使用去识别化之前,机构应评估其使用去识别化的目标以及去识别化可能造成的潜在风险。机构应决定去识别化发布模型,例如发布去识别化数据、发布基于已识别数据的合成数据或提供包含去识别化的查询界面。机构可以成立一个披露审查委员会来监督去身份识别过程。他们还可以采用具有可衡量绩效水平的去身份识别标准,并进行重新识别研究,以评估与去身份识别相关的风险。有几种具体的去身份识别技术可供选择,包括通过删除标识符和转换准标识符以及使用正式隐私模型进行去身份识别。执行去身份识别的人