摘要:自2017年以来,奥兰多·伦戈(Orlando Luongo)担任卡梅利诺大学(University of Camerino)科学技术学院物理学系的宇宙学和量子场理论教授。他还是比萨大学数学系的研究助理。在他目前的工作之前,他曾在Frascati的国家核物理学实验室(INFN)曾担任As-Sistant教授(Ricercatore Articolo 36,III Livello)。尤其是他是卫星/月球/GNSS激光射程/高度测定和立方体/MicroSAT表征的一部分。他于2008年在那不勒斯大学“ Federico II”大学获得了他的物理学硕士学位。他在2015年获得了那不勒斯大学“ Pegaso”的第二次土木工程学士学位。他于2012年在罗马“ La Sapienza”获得了相关天体物理学的国际博士学位。2015年,他因其天体物理学的高影响力研究而获得了意大利物理学会(SIF)的波尔瓦尼国家奖。在2018年,他获得了全国科学资格,副教授(2010年12月30日的第16条,第16届,N.240,Settore Concorsuale:02/a2 -Fisica teorica teorica delle interazioni fondamentali fondamentali,ssd fis/ssd fis/02 -fisica teorica teorica teorica teorica,modelli emeteli emetodi emematici emematici emematici)。他的利益本质上是基于宇宙学和相对论的天体物理学,即黑暗能量和暗物质的本质,以及相对论量子信息,协变疗法,有效领域理论,纠缠等的研究。
中微子真实本质的实验探索可以追溯到核物理学和粒子物理学的早期,现在正利用高精度和大规模的实验、机器和探测器。对假设的难以置信的罕见事件——原子核的无中微子双重贝塔衰变——的观察将表明中微子是其自身的反粒子,并有助于回答为什么宇宙中的物质多于反物质的基本问题。由于来自探测器的巧合但罕见的背景(即非信号)数据,当前和计划中的实验只能探索无中微子双重贝塔衰变的某些理论。要完全解决原子核是否能发生这种尚未检测到的反应,需要在探测器技术上取得新的突破,通过消除背景事件,达到难以捉摸的“正常有序”无中微子双重贝塔衰变模式。该研究项目将把核物理研发领域的最新进展统一并整合到一种新型探测器中,该探测器能够展示无背景无中微子双贝塔衰变搜索。值得注意的是,这将包括能够在单离子水平上检测氙气双贝塔衰变产生的钡++离子的传感器。此外,该探测器将综合直接紫外光收集和快速光学相机,以实现无中微子双贝塔衰变事件的高分辨率 3D 成像。实现无背景无中微子双贝塔衰变搜索将使科学办公室对无中微子双贝塔衰变的高优先级搜索达到前所未有的灵敏度水平。
1 密歇根州立大学国家超导回旋加速器实验室,美国密歇根州东兰辛 48824 2 密歇根州立大学物理系,美国密歇根州东兰辛 48824 3 日本理化学研究所仁科中心,广泽 2-1,埼玉县和光市 351-0198 4 京都大学物理系,京都北白川市 606-8502,日本5 高丽大学物理系,首尔 02841,大韩民国 6 达姆施塔特工业大学核物理学研究所,D-64289 达姆施塔特,德国 7 GSI Helmholtzzentrum für Schwerionenforschung, Planckstrasse 1, 64291 达姆施塔特,德国 8 物理、天文学和应用计算机科学学院,雅盖隆大学,波兰克拉科夫 9 克罗地亚萨格勒布 Rudjer Boskovic 研究所实验物理部 10 日本东京西池袋 3-34-1 立教大学物理系 171-8501 11 韩国大田 34047 基础科学研究所稀有同位素科学项目 12 日本仙台 980-8578 东北大学物理系 13 日本东京工业大学物理系 152-8551 14 日本核物理研究所 PAN,ul。 Radzikowskiego 152, 31-342 克拉科夫,波兰 15 德克萨斯 A&M 大学回旋加速器研究所,德克萨斯州学院站 77843,美国 16 尼凯夫国家亚原子物理研究所,阿姆斯特丹,荷兰 17 清华大学物理系,北京 100084,中国 18 德克萨斯 A&M 大学化学系,德克萨斯州学院站 77843,美国 19 IFIN-HH,Reactorului 30,077125 Mˇagurele-Bucharest,罗马尼亚(日期:2021 年 3 月 17 日)
所有物质的结构和性质都由基本相互作用和对称性决定。对于可见物质的小组成部分——原子来说尤其如此。因此,原子光谱的研究是提高我们对自然理解的重要工具。高电荷离子构成了所有原子系统的大多数,因为每个单独的元素都具有与电子一样多的电荷状态,并且它们在宇宙中无处不在。因此,它们的系统研究不仅是原子物理学的一个组成部分,而且对天体物理学、核物理学和聚变研究等许多其他领域也具有重要意义。最近,高带电离子中的光学跃迁已被提出用于粒子物理标准模型之外的未知物理的敏感测试和新型光学原子钟。然而,由于实验方法不充分,相对光谱精度仅略优于 10 −6,迄今为止阻碍了此类项目的实施。在这项工作中,我们首次展示了高电荷离子的相干激光光谱。与以前使用的光谱方法相比,精度可以提高约 8 个数量级。以高电荷40 Ar 13 +离子中的光学2 P 1 / 2 – 2 P 3 / 2精细结构跃迁为例进行了研究。将该物种的单个离子从热等离子体中分离出来,并将其与激光冷却的单电荷 9 Be + 离子一起作为双离子晶体存储在低温保罗阱的谐波势中。然后,这个耦合的量子力学系统被冷却到运动基态——这是高电荷离子所达到的最冷状态。利用量子逻辑,可以制备40 Ar 13 +离子的电子态,经过光谱分析后,转移到9 Be +逻辑离子并进行检测。此外,还测量了激发态的寿命和 g 因子——后者具有前所未有的精度,这使得解决狭义相对论、电子相互作用和量子电动力学的效应成为可能,并澄清了不同理论预测之间的差异。所展示的概念普遍适用于高电荷离子。因此,这项工作开辟了高带电离子用于各种基础物理测试的潜力,用于探索未知物理(例如第五种力、基本常数的变化和暗物质)以及用于未来的光学原子钟。
任意体物理学研究相互作用的量子粒子集合的行为。这是一个广泛的领域,几乎涵盖了所有凝聚态物理学,也包括核物理学和高能物理学。尽管近几十年来取得了巨大的成功,但许多实验观察到的现象仍然没有完全令人满意的解释。从支配粒子间相互作用的微观定律推导出宏观特性的困难在于希尔伯特空间的大小随粒子数量呈指数级增长。实际上,最著名的从头算方法可以计算少于 50 个粒子的演化。要研究涉及大量粒子的相关问题(毕竟,即使 1 毫克的普通物质也已经包含 10 18 个原子!),必须依靠近似值,而解决多体问题的技巧很大程度上依赖于掌握近似值。然而,使用近似值并不总是可行的,而且可能很难评估它们的有效性范围。理查德·费曼 1 提出了一种前进的方法,即在实验室中建立一个合成量子系统,并实现一个感兴趣的模型,该模型目前尚无其他解决方法。该模型可能是对真实材料的近似描述,也可能是纯粹抽象的模型。在这种情况下,它的实现导致构建一个人工多体系统,而该系统本身也成为研究对象。这种方法的一个吸引人的特点是能够在其他方法无法达到的范围内改变模型参数,从而提供一种更好地理解它们各自影响的方法。例如,如果人们对原子间相互作用对特定系统相的作用感兴趣,那么合成系统就会变得有趣,因为它们允许以真实材料中通常不可能的方式改变其强度。费曼引入的方法通常被称为量子模拟 2 , 3 ,但它可以更广泛地被视为用合成系统探索多体物理:就像化学家设计表现出有趣特性(如磁性、超导性)的新材料一样,物理学家组装人工系统并研究其特性,希望观察到新现象。长期以来,这个想法一直停留在理论上,因为对量子对象的实验控制还不够先进。过去 20 年来,情况发生了根本性变化,
2021年3月8日,参议院主席Mary Gauvain Dear Gauvain:在3月3日会议上,研究生事务协调委员会(CCGA)以10-0-2投票批准了UCLA校园的提案,供量子科学技术硕士(QST)。QST计划为学生准备量子技术领域的研发。QST计划中的学生将学习量子力学,量子计算,量子信息和量子设备的基础,他们将学习如何使用量子光学器件,量子传感和材料以及量子设备在实验室中工作,并且他们将学习算法,语言,语言,语言和量子计算的工具。QST计划的一个显着特征是重要的实验室组件,这将有助于将UCLA确立为量子科学家的主要教育者。量子信息科学(QIS)是研究,技术和教育的最前沿的新兴领域。它汇集了传统上在不同领域工作的科学家,例如原子,分子和光学,冷凝物质以及高能量/核物理学,以及工程师,化学家,计算机科学家和数学家。审稿人指出,计划是高质量的,严格的,经过深思熟虑的课程,并指出实验室课程是一种特殊的优势。他们还指出,该计划中的教师教学集很大(来自多克一家部门),并且有资格教授课程。这些教师在研究领域被描述为一流的,对教育和教学法非常感兴趣。多样性将通过财务奖学金(在第一年和第二年,一个50%的奖学金以及较小的奖项;在接下来的几年中,两次50%的奖学金以及较小的奖项以及较小的奖项;这与提议者有关,因为提案中的计划也发生了不同的计划),并在附近的机构中直接招募了促进培训的奖学金(即直接招募社交机构)。物理与天文学系多样性,公平和包容委员会(DEI)的成员将在该计划的招聘和招生委员会中任职,该部门的DEI委员会将评估招聘和保留方面的成功。提案者还表示,他们最近通过NSF量子LEAP挑战研究所奖获得了资金,授予Recuit Lubi Lenaberg,后者是评估和评估计划经理(UC Santa Barbara),以评估该计划在公平,多样性和包容性方面的表现。最后,提议者确实承认,申请人池的初始多样性可能会受到限制,因为它仅限于BS物理学
OAR 拥有设备精良、人员配备精良的实验室和野外基地,由空军科学家负责指导,这些科学家从事的研究领域最有可能促进空军持续的技术发展。虽然 OAR 主要关注获取新的基础知识,但其始终强调将研究项目的结果应用于提高空军的能力。OAR 的任务是通过实验室内部研究来完成的,并通过拨款和合同在大学和工业实验室进行研究。OAR 前副指挥官 Ernest A. Pinson 准将于 1965 年 10 月成为该组织的新任指挥官,此前,Don R. Ostrander 少将自 1962 年 9 月起担任 OAR 指挥官,现已退休。Pinson 将军拥有罗彻斯特大学医学生理学博士学位,并已完成加州大学核物理学专业的所有要求,在目前的职位上拥有 27 年的空军研究和开发经验。尽管 OAR 有 10 个下属部门,分布在美国各地和两个国家,但其大部分资源都集中在其中三个部门。其中最大的是位于马萨诸塞州贝德福德劳伦斯 G. 汉斯科姆场的空军剑桥研究实验室 ( AFCRL)。该实验室雇用了 OAR 一半以上的人力,专门研究环境科学(涉及地球、大气和太空)和电子学。1966 财年,AFCRL 科学家研究了各种各样的课题,从初步的空中重力测量和冷雾分散技术的开发,到改进的计算机流程和新的天线设计。AFCRL 的科学家开发并验证了一种回收和再利用昂贵研究气球的新方法,在气球开发领域取得了首创。第二个组成部分,也是 OAR 的另一个主要内部实验室综合体,位于俄亥俄州赖特帕特森空军基地的航空航天研究实验室 ( ARL ),专注于物理和工程科学研究。在这些领域,ARL 正在进行的研究包括推进、超音速风洞技术、固态物理和数学。在过去的一年里,ARL 科学家在电流体动力学 (EFD) 过程领域进行了研究。这些过程为未来的太空动力系统带来了巨大的希望,该系统将使用直接能量转换过程,而不使用移动机械部件来发电。另一个显示出巨大希望的发展领域是开发一种可用于军用涡轮驱动车辆的高效惯性粒子分离器。开发这种颗粒分离器可延长发动机寿命,这一点尤其重要
雄鹿县科学研究竞赛(BCSRC)于2024年3月9日在特拉华谷大学举行。要确保您拥有所有必要的信息,请事先查看详细信息。今年的比赛有一些变化,因此必须了解。访问链接以获取更多信息并查看或添加评论。比赛将遵循与特拉华谷科学博览会(DVSF)相同的类别。如果您从BCSRC前进,则您的项目将自动获得其各自类别中的DVSF。请记住,所有团队项目都属于“团队项目”类别,无论其重点如何。可用类别是: - 行为和社会科学 - 生物化学 - 植物学 - 化学 - 计算机科学 - 消费者科学(仅6 - 8年级) - 地球与太空科学 - 工程 - 环境科学 - 数学 - 医学与健康 - 微生物学 - 物理学 - 团队项目 - 每个类别 - 动物学 - Zoology thecriptions tesscriptions its Testriptions ussessy cistessy of dvsf dvsf。这些描述可以更好地理解每个类别所需的内容。皮肤病学,过敏,语音和听力等。微生物学研究细菌学,病毒学,原生动物,真菌和细菌遗传学以及酵母和其他微生物。物理学涉及有关能量及其对物质影响的理论,原理和法律,包括固态,光学,声学,粒子物理学,核物理学,原子理,血浆物理学,血浆物理学,超导性,流体动力学,热力学,半导体,半导体,半导体,磁性,磁性,磁性机械,生物生物物理学等。团队项目以多学科或跨学科方法涵盖所有学科。这些项目涉及2-3个团队成员并涵盖各种STEM主题。动物学研究动物,包括动物遗传学,鸟类学,鱼类学,疱疹学,昆虫学,动物生态学,古生物学,细胞生理学,昼夜节律,动物养殖,细胞学学,组织学,动物生理学,无脊椎动物神经生理学以及无脊椎动物的研究。科学博览会项目不仅仅是建造模型或火山;它们涉及有关STEM主题的复杂研究。在13个不同类别中,学生专注于STEM主题,包括团队项目。每年,来自宾夕法尼亚州,新泽西州南部和特拉华州的大约900至1,000名学生参加了科学博览会。这些学生做出了开创性的发现,可以永远改变他们的生活。奖学金和奖金授予科学博览会的获奖者。顶级高中获奖者参加了Regeneron国际科学与工程博览会(ISEF)的比赛,获得了超过400万美元的奖学金和奖项。中学获奖者参加了Thermo Fisher Junior Innovators挑战全国比赛。DVSF成立于1949年,是一个非营利组织,旨在为学生提供动手科学经验。特拉华州谷科学博览会公司由地区公司,基金会,大学和个人捐助者赞助。DVSF的使命是促进年轻人的关键解决问题技能和科学素养。
物理学系物理和化学科学学院,南比哈尔大学,印度盖亚,摘要:我们提出了一个实验,以使用光电管进行液体有机闪烁探测器以及液态有机化管的液体有机闪烁探测器以及通过液态有机闪烁溶液进行高能粒子检测的实验。我们还计划找出长期稳定性,低背景噪声,高增益和高信号比率,能源的分辨率,脉冲快速响应和良好平稳特征的所需条件。使用液体有机闪烁材料解决方案,依此类别,以检查环境辐射水平。和伽玛射线照片峰给定物质的存在和校准。1.0在HEP实验实验室中介绍我们正在设法使液体有机闪烁检测器非常适合广泛应用,包括核物理学研究,宇宙和伽马射线检测,中微子检测,中微子检测,暗物质搜索,暗物质搜索,医疗成像,环境监测,环境监测和安全性筛查的方法与我们的a afferencrienct不同,因为我们在使用不同的行业方面进行了不同的行业,因为我们在使用不同的行业方面进行了尝试。 PMT组件的包装和连续更改液体有机溶液,并尝试在短时间内使用波长变速杆在短时间内找到U.V范围的完美穿透。使用液体有机闪烁材料解决方案,依此类推,以检查环境辐射水平。和当前的材料伽玛射线摄影和校准。1。2。并尝试使用SCA和MCA模块找到不同的来源校准,因此建议一个实验,以设计和开发液体有机闪烁检测器,并使用光电管进行闪烁计数,并通过液体有机闪烁溶液进行高能颗粒检测。我们还尝试在高工作电压下研究PMT的特征,并计划找出长期稳定性,背景噪声较小,高增益和高信号比率,能源的分辨率,脉冲快速响应和良好高原特性的所需条件。2.0研究的需求。未来的发展使流动的有机闪烁检测器更加高效,用户友好,多功能,扩展并尝试应用范围并改善各种科学,医学和工业领域的性能,并用于闪烁计数。So in future we can use the liquid organic scintillation detector for developing new organic compounds that produce more light, improving sensitivity and resolution, and creating the materials that resist radiation damage, extending the lifespan of detector and developing detector for ultar-low-level radiation detection in environmental applications and creating smaller detector for portable radiation monitoring, pocket dosimeter and we can also used for environmental monitoring and radiation safety.将液体有机闪烁与其他检测技术相结合,以提高效率和分辨率。闪烁材料密度和原子数应为高γ射线检测效率高。Using wavelength shifter material to optimize the match between scintillation emission and photo-detector sensitivity and designing wearable scintillation detectors for continuous radiation exposure monitoring and initially used in large-scale experiments JUNO for detecting neutrinos, Implementing advanced DSP techniques for more better signal clarity and letting faster data and try to used for utilizing machine learning process to analyze scintillation signals, improving辐射类型水平识别和能量估计的准确性,将闪烁材料与半导体芯片集成在一起,以进行紧凑,更好的有效检测系统,还用于空间任务并添加无线通信功能,以实时数据传输和远程监视。3.1闪烁和理想的闪烁,只有当高能颗粒入射原子上并进行原子的激发和驱引激气时,就会在原子上进行激发和驱散,然后几秒钟〜NANO秒后降到基础状态并沉积了能量并产生伽马射线光子。使用预设时间 /衰减时间比给出快速脉冲响应要小。
1阿德莱德大学,阿德莱德,阿德莱德,澳大利亚2劳动劳动仪和f´ısica实验depart'ıculas -lip and Instituto superior tstic- iSt-伊斯特,伊斯特,伊斯兰特大学 - 乌尔 - 乌尔 - 乌尔 - 乌尔斯博亚大学 - 利斯博亚大学,利斯博亚,葡萄牙3个天文学,turin turin,turin,intaftor,intaftor,intaf。都灵,意大利5号,位于奥米科·巴洛克(Omico Bariloche)和巴尔西罗(Instituto Balseiro)(cnea-uncuyo-concet),阿根廷圣卡洛斯·德·巴洛克(San Carlos de Bariloche),阿根廷6核物理学研究所,克拉科夫(Krakow),波兰(Krakow),波兰(Krakow),波兰7研究所,tecnolog´head en detecci´head en detecci´on y astroparpart y sartropart´in y sartopart´in uns uns uns uns uns bue,阿根廷艾尔斯8大学,tecnol´gica nacional -Argentina Buenos Aires,阿根廷布宜诺斯艾利斯市教职员工9 Gran Sasso Science Institute,L'Aquila,意大利L'Aquila 10 Infn National Laboratories Gran Sasso的Infn National Laboratories Gran Sasso,Gran Sasso,Assergi(L'Aquila),Italy 11 Instituto Galego Galego Galego Galego Galego Galego Galego Galego Galego Galego de altasig de alasig de alasig de aalts'大学)。西班牙圣地亚哥·德·波斯特拉(De Santiago de Compostela)意大利米兰米兰区17 INFN,那不勒斯,那不勒斯,意大利18 rwth亚兴大学,iii。Grenoble Alpes,LPSC-In2p3,38000 Grenoble,法国27 Max-Planck-Institut Paur放射捕集,德国波恩28 Instituto de f´isica de f´isica de Rosario(Ifir)-Conicet/u.n.r。physikalisches Institut A,德国亚州19号捷克共和国布拉格24科罗拉多州科罗拉多州矿业学院和Biochoquic and Pharmactics Sciences U.R.,Rosario,阿根廷29 Karlsruhe技术研究所(KIT),实验粒子物理研究所,Karlsruhe,德国,德国30 Imapp,Radboud University,Nijmen,Nijmen,Nijmen,Nijmen。荷兰阿姆斯特丹科学园的Hoge Energie Fysica(Nikhef)的Kernfysica 32巴黎 - 萨克莱大学,CNRS/IN2P3,IJCLAB,IJCLAB,IJCLAB,IJCLAB,ORSAY,法国33 Institut Universitaire Universitaire Universitaire de France(IUF),法国34 Karlsruhe Institute Institute of Cregenhitation of Crenolety Institute of Actirate of Actrot of Actrot of Actrot ofart over carret德国的卡尔斯鲁赫(Karlsruhe)35国际高级研究中心和物理科学研究所,eCyt-nnsam和conicet,校园Miguelete-sanMartín,布宜诺斯艾利斯,布宜诺斯艾利斯,阿根廷联邦政府,阿根廷联邦政府C.A.F.P.E.,格拉纳达,西班牙40 Vrije Universite Brussels,布鲁塞尔,比利时,41 Universit`a di Palermo,Dipartimento di Physics和Chimica” E. div>segr`e ", Palermo, Italy 42 Universidad Aut´Onoma de Chiapas, Tixtla Guti´Errez, Chiapas, M’EEXICO 43 Instituto de Tecnolog’ıs en Detecci´on y Astropart´ıculas (Cnea, Conicet, Unsam), and Universidad Tecnol´ today Nacional - Facultod Regional MenDoza (Conicet/Cnea), Mendoza, Argentina 44 Universidade de S˜ao Paulo, Escola de Engenharia de Lorena, Lorena, SP, Brazil 45 Infn, Section of Lecce, Lecce, Italy 46 Observatorio Pierre Auger, Malargs, Argentina 47 Palacky University, Olomouuc, Czech Republic 48 University of Naples " II“物理学系”,“ Ettore Pancini”,意大利那不勒斯49米兰理工学院,航空水平科学系,米兰,意大利萨伦托大学米兰,数学与物理学系” E.de Giorgi ", Lecce, Italy 51 Universidade Federal Fluminense, Eeimvr, Volta Redonda, RJ, Brazil 52 Case Western Reserve University, Cleveland, Oh, USA 53 University Siegen, Department Physik - Experimentelle Teilchenphysik, Siegen, Germany 54 IFLP, Universidad, Universidad Nacional de la Plata and conicet, La Plata,阿根廷55天文学研究所,艾斯卡西奥(IAFE,CONICE-uba),布宜诺斯艾利斯,阿根廷56 de f´ısica和Departura de ciencias de ciencias de la at at Amp at Amp y atm y Los oc´ean Y los oc´ean,FCEYN,FCEYN,FECEYN,FECEYN,FECEYN,UNDUREDAD DEBENES AIRES AIRES AIRES DEESERES,BUENES DEESERES,BUENES,BUENES,BUENES,BUENES DEERES,BUENES DEERES。 Janeiro(UFRJ),observ´orio do Valongo,Rio de Janeiro,RJ,RJ,巴西58联邦政府deEduca报,CI Uense和Technology Do Rio de Janeiro(IFRJ),巴西59 de s〜sive s〜s〜ao Paulo,Spituto de f´