摘要 - 皮带输送机被广泛用于跨冶金,采矿和其他行业的材料运输。他们的长时间操作不可避免地会导致皮带偏差和溢出等问题。目前,皮带偏差主要是由于矿石的分布不均匀,这也导致溢出。如果这些问题未迅速解决,它们可能会破坏生产并构成许多安全风险。矿石运输过程通常以浓烟和复杂的环境为特征,使手动检查时间耗时,劳动力密集并且可能存在危险。本文介绍了一种基于机器视觉的皮带洒水检测方法,以实现复杂的工作条件。它增强并处理由摄像机收集的皮带的灰度图像,以消除烟雾干扰并突出皮带和矿石的特征。边缘检测和霍夫变换用于查明皮带的边缘,确定皮带和矿石内部的分布。GWO-SVM(灰狼优化器支持矢量机)模型,以实时预测皮带的运行状态,以确定任何异常以确保安全生产。实验比较表明,GWO-SVM模型动态选择“ C”和“ G”的最佳参数,从而得出准确的分类和检测结果。它的特征是高精度,强大的实时性能和出色的稳定性,有效地节省了成本和保护生产安全。
母羊、山羊和水牛奶中含有牛奶,这是由于 γ-酪蛋白在纤溶酶分解后发生等电聚焦所致。 该方法基于与认证参考标准的蛋白质模式进行比较,可以定性估计测试样品中的牛奶。
摘要:糖尿病疾病在全球范围很普遍,预测其进展至关重要。已经提出了几种模型来预测这种疾病。这些模型仅确定疾病标签,从而使发展疾病的可能性不清楚。提出一个预测疾病进展的模型至关重要。因此,本文提出了一个逻辑回归模型,以预测糖尿病综合征发病率的可能性。使用Sigmoid函数的模型利用逻辑回归的功能。使用PIMA印第安人糖尿病数据集评估了模型的性能,并表现出很高的精度,灵敏度和特异性。预测准确率为77.6%,灵敏度为72.4%,特异性为79.6%,I型误差为27.6%,II型误差为20.4%。此外,该模型表明了使用实验室测试的可行性,例如妊娠,葡萄糖,血压,BMI和糖尿病性重复功能,以预测疾病进展。提出的模型可以帮助患者和医生了解疾病的进展并及时进行干预措施
摘要 — 糖尿病视网膜病变 (DR) 是一种复杂的疾病,结合来自患者病史、实验室结果或基因数据等多种来源的信息可以增进理解。眼科医生或自动化系统可以通过人工检查识别 DR。由于其成本效益和时间效率,糖尿病视网膜病变的自动检测已成为患者和医疗保健提供者的首选。这项研究的新颖之处在于开发了一种使用多模态数据融合预测糖尿病视网膜病变的模型,通过在长短期记忆 (LSTM) 网络中实现的早期融合技术,结合眼底视网膜图像、光学相干断层扫描 (OCT) 和电子健康记录 (EHR)。我们的模型利用多模态数据与局部二值模式 (LBP) 的早期融合,已展示出最佳性能,实现 AUC 值 0.99。这种高精度表明,整合来自各种数据源的信息可以显著提高模型检测糖尿病视网膜病变阳性和阴性病例的能力,从而增强我们对研究结果的可靠性的信心。
1 年前ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ ꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏꞏ 1
恒温扩增核酸检测技术因其耗时短、对扩增 设备要求低和引物探针商品化合成稳定等优势 , 在 病原快速检测技术中脱颖而出。 Piepenburg 等 [ 13 ] 参 照 T4 噬菌体 DNA 复制系统于 2006 年创建了一种新 型等温扩增技术 , 使用酶来打开双链 DNA, 该技术 称为重组酶聚合酶扩增 (Recombinase polymerase am- plification, RPA) 。随后发明的重组酶介导链置换 核酸扩增技术 (Recombinase-aid amplification, RAA) 技术原理与 RPA 类似 , 不同之处在于 RAA 的重组酶 来源于细菌或真菌 , 而 RPA 的重组酶来自 T4 噬菌 体。 2017 年 [ 14 ] 结合以上重组酶 , SHERLOCK (Specifi- chigh-sensitivity enzymatic reporter unlocking) 检测 方案问世 , 并应用于新冠病毒的检测技术开发 [ 15 ] , 该技术通过改造规律间隔成簇短回文重复序列及 其关联蛋白 (Clustered regularly interspaced short pa- lindromic repeats/CRISPR-associated proteins system, CRISPR/Cas) 系统 , 使其能够识别特定的严重急性 呼吸综合征冠状病毒 2 (Severe acute respiratory syn- drome coronavirus 2, SARS-Cov-2) 基因组片段 , 1h 就能确定检测结果 , 检测限可低至 2 amol/L 。 SHER- LOCK 技术特异和简便 , 将 SHERLOCK 与 RAA 整合 集成 , 能够凸显两者的优势 , 不仅可以实现靶标核 酸的快速扩增 ( 保留等温扩增技术的优势 ), 还增强 了检测特异性。
引入由明胶制成的产品通常包含具有非常低浓度和较高抑制剂的DNA,因此在检测猪含量时需要敏感,特异和一致的测试方法。这是由于含有低浓度的DNA的明胶基质,含有抑制剂将抑制扩增反应。因此,需要足够的提取技术来获得尽可能多的DNA,然后将其纯化。足够且不包含高抑制剂的DNA量决定了样品中包含的靶DNA扩增的成功。该标准是为了提供标准测试方法来检测使用实时PCR仪器的含明胶产品中低浓度的猪DNA含量。该标准可以用作授权监管机构进行的市场前和市场监管活动的参考。该标准是通过考虑立法的规定,如下所示:1。2012年第18号法律有关食品; 2。2014年第33号法律有关清真产品保证; 3。1999年第69号政府法规涉及食品标签和广告; 4。政府法规2019年第86条有关粮食安全; 5。政府法规2021年第39号法规有关清真产品保证的实施; 6。POM调节编号HK.03.1.23.06.10.5166 2010年的2010年,关于包括某些成分,酒精含量和到期限制的信息,包括标记/标签药物,传统医学,食品和食品补充剂; 7。POM法规2018年第31条有关处理的食品标签及其修正案,即粮食和药物监督机构2021年第2021号粮食监督机构的监管机构对2018年食品和药品监督机构的修正案的修正加工食品标签。
摘要 — 坑洼检测对于道路安全和维护至关重要,传统上依赖于 2D 图像分割。然而,现有的 3D 语义坑洼分割研究往往忽略点云稀疏性,导致局部特征捕获和分割精度不理想。我们的研究提出了一种创新的基于点云的坑洼分割架构。我们的模型有效地识别隐藏特征并使用反馈机制来增强局部特征,改善特征呈现。我们引入了一个局部关系学习模块来理解局部形状关系,增强了结构洞察力。此外,我们提出了一种轻量级自适应结构,用于使用 K 最近邻算法细化局部点特征,解决点云密度差异和域选择问题。共享 MLP 池化被集成以学习深度聚合特征,促进语义数据探索和分割指导。在三个公共数据集上进行的大量实验证实了 PotholeGuard 优于最先进方法的性能。我们的方法为稳健而准确的 3D 坑洼分割提供了一种有前途的解决方案,可应用于道路维护和安全。索引词——坑洼、点云、语义分割、计算机视觉
。加巴。计算机科学,UL。。 08544,美国墨西哥蒙丹,88025 34055,韩国10 St. Cherry,Tucson,Tucson,AZ,美国物理与天文学大学3009,NA 6009,15
摘要。将微处理器与侧通道攻击进行硬化是确保其安全性的关键方面。此过程中的关键步骤是在识别和减轻“泄漏”硬件模块,该模块在执行加密算法期间泄漏信息。在本文中,我们介绍了不同的泄漏检测方法,侧通道漏洞因子(SVF)和测试向量泄漏评估(TVLA)如何有助于对微处理器的硬化。我们使用两个加密算法sha-3和AES对两个RISC-V核心Shakti和Ibex进行实验。我们的发现表明,SVF和TVLA可以为识别泄漏模块提供宝贵的见解。但是,这些方法的有效性可能会因使用的特定核心和加密算法而有所不同。我们得出的结论是,泄漏年龄检测方法的选择不仅应基于计算成本,还应基于系统的特定要求,所检查算法的实施以及潜在威胁的性质。