目视检查是迄今为止最常见的无损检测 (NDE) 技术(参考文献 1)。在尝试确定任何部件或样本是否适用于其预期应用时,目视检查通常是检查过程的第一步。通常,几乎任何样本都可以通过目视检查来确定其制造的准确性。例如,目视检查可用于确定部件是否按照正确的尺寸制造、部件是否完整或所有部件是否已正确组装到设备中(参考文献 2)。虽然直接目视检查是最常见的无损检测技术(图 1),但许多其他 NDE 方法需要视觉干预来解释在进行检查时获得的图像。例如,使用可见红色或荧光染料的渗透检查依赖于检查员目视识别表面指示的能力。磁粉检测与可见光检测技术和荧光检测技术属于同一类别,而射线照相技术则依赖于解释人员对射线图像的视觉判断,该图像可以显示在胶片上,也可以显示在视频监视器上。本文的其余部分对目视检测方法进行了总结,该方法至少需要与被检测样本的部分进行视觉接触。在对目视检测进行定义时,文献中指出,目视检测经验以及与经验丰富的目视检测员的讨论表明,这种 NDE 方法不仅包括眼睛的使用,还包括检测员使用的其他感觉和认知过程(参考文献 3)。因此,现在文献中对目视检测有了扩展的定义:“目视检测是利用人类感觉系统检查和评估系统和部件的过程,仅借助放大镜、牙签、听诊器等机械增强感觉输入来辅助。”检查过程可以通过观察、聆听、感觉、嗅觉、摇晃和扭动等行为来完成。它包括一个认知部分,其中观察结果与结构知识以及服务文献中的描述和图表相关联(参考文献 3)。”
损伤容限认为,尽管飞机可能存在亚临界裂纹和缺陷,但飞机仍能保持适航性。这一理念承认,不可能在整个飞机上建立完整的结构冗余。因此,损伤容限飞机的持续适航性在很大程度上取决于能够在裂纹和缺陷达到临界尺寸之前检测出它们的检查程序的实施。为了进一步加强满足损伤容限标准所需的维护和检查程序,联邦航空管理局于 1981 年发布了咨询通告 (AC) 91-56。该 AC 为飞机制造商和运营商提供了制定补充结构检查文件 (SSID) 的指南。SSID 提供了一种通过满足损伤容限要求来维持老式运输飞机持续适航性的计划。通过 SSID 计划,最初设计为故障安全型的飞机通过更新的检查程序基本上符合损伤容限理念。
背景和目的:患有原发性硬化性胆管炎(PSC)的人具有可变且经常进行性疾病的病程,与胆道和实质变化有关。这些变化通常通过磁共振成像(MRI)评估,包括磁共振胆管造影术(MRCP)的定性评估。我们的目的是研究新型客观定量MRCP指标与预后分数和患者结局的关联。方法:我们进行了一项回顾性研究,其中包括77个具有基线MRCP图像的大型Duct PSC的个体,后处理后处理以使用MRCP+ TM获得胆管的定量测量。参与者的分析得分,通过振动控制的瞬态弹性图和生化指数在基线时收集。不良结果 - 无生存率是在12年内没有代偿性肝硬化,肝移植(LT)或与肝脏相关的死亡的。通过COX回归建模评估了MRCP+衍生指标的预后价值。结果:记录了总计386例患者,16例代偿性,2例LT和5例与肝有关的死亡。基线时,约有50%的患者被分类为患疾病并发症的风险。MRCP+指标,尤其是描述胆管扩张严重程度的指标,与所有预后因素相关。单变量分析表明,代表管道直径,扩张和狭窄和/或扩张的导管百分比的MRCP+指标与生存有关。©2022作者。在多变量调整的分析中,中位导管直径与存活率显着相关(危险比10.9,95%CI 1.3 - 90.3)。结论:PSC患者中的MRCP+指标与生化,弹性和放射学预后分数相关,并可以预测无效的生存率。lay摘要:在这项研究中,我们在患有原发性硬化性胆管炎(PSC)的患者中评估了由软件工具(MRCP+)自动提供的新型客观定量MRCP指标与预后分数和患者结果的关联。我们观察到,PSC患者的MRCP+指标与生化,弹性和放射学预后分数相关,并且可以预测无效的生存率。由Elsevier B.V.代表欧洲肝脏研究协会(EASL)出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
Sherbrooke大学是一家讲法语的机构,以其人类维度,创新的操作风格和与专业人士的合作而闻名。Sherbrooke大学欢迎来自全球102个国家和地区的31,700多名学生。该系由24位积极参与以下研究领域的教授组成:人工智能,生物信息学,健康信息学,人类计算机互动,成像和数字媒体科学等。NLP实验室专注于理解和生成与社会问题有关的各种学科中的文本。其工作包括对可恶内容的识别和缓解,对假新闻的检测,对社交网络表达的立场的分析以及基于神经体系结构的NLP模型中的偏见的解释性和降低。
目视检查是迄今为止最常见的无损检测 (NDE) 技术(参考文献 1)。在尝试确定任何部件或样本是否适用于其预期应用时,目视检查通常是检查过程的第一步。通常,几乎任何样本都可以通过目视检查来确定其制造的准确性。例如,目视检查可用于确定部件是否按照正确的尺寸制造、部件是否完整或所有部件是否已正确组装到设备中(参考文献 2)。虽然直接目视检查是最常见的无损检测技术(图 1),但许多其他 NDE 方法需要视觉干预来解释在进行检查时获得的图像。例如,使用可见红色或荧光染料的渗透检查依赖于检查员目视识别表面指示的能力。磁粉检测与可见光检测技术和荧光检测技术属于同一类别,而射线照相技术则依赖于解释人员对射线图像的视觉判断,该图像可以显示在胶片上,也可以显示在视频监视器上。本文的其余部分对目视检测方法进行了总结,该方法至少需要与被检测样本的部分进行视觉接触。在对目视检测进行定义时,文献中指出,目视检测经验以及与经验丰富的目视检测员的讨论表明,这种 NDE 方法不仅包括眼睛的使用,还包括检测员使用的其他感觉和认知过程(参考文献 3)。因此,现在文献中对目视检测有了扩展的定义:“目视检测是利用人类感觉系统检查和评估系统和部件的过程,仅借助放大镜、牙签、听诊器等机械增强感觉输入来辅助。”检查过程可以通过观察、聆听、感觉、嗅觉、摇晃和扭动等行为来完成。它包括一个认知部分,其中观察结果与结构知识以及服务文献中的描述和图表相关联(参考文献 3)。”
损伤容限认为,尽管飞机可能存在亚临界裂纹和缺陷,但飞机仍能保持适航性。这一理念承认,不可能在整个飞机上建立完整的结构冗余。因此,损伤容限飞机的持续适航性在很大程度上取决于能够在裂纹和缺陷达到临界尺寸之前检测出它们的检查程序的实施。为了进一步加强满足损伤容限标准所需的维护和检查程序,联邦航空管理局于 1981 年发布了咨询通告 (AC) 91-56。该 AC 为飞机制造商和运营商提供了制定补充结构检查文件 (SSID) 的指南。SSID 提供了一种通过满足损伤容限要求来维持老式运输飞机持续适航性的计划。通过 SSID 计划,最初设计为故障安全型的飞机通过更新的检查程序基本上符合损伤容限理念。
目视检查是迄今为止最常见的无损检测 (NDE) 技术(参考文献 1)。在尝试确定任何部件或样本是否适用于其预期应用时,目视检查通常是检查过程的第一步。通常,几乎任何样本都可以通过目视检查来确定其制造的准确性。例如,目视检查可用于确定部件是否按照正确的尺寸制造、部件是否完整或所有部件是否已正确组装到设备中(参考文献 2)。虽然直接目视检查是最常见的无损检测技术(图 1),但许多其他 NDE 方法需要视觉干预来解释在进行检查时获得的图像。例如,使用可见红色或荧光染料的渗透检查依赖于检查员目视识别表面指示的能力。磁粉检测与可见光和荧光检测技术属于同一类别,射线照相术依赖于解释者对射线照相图像的视觉判断,该图像可以在胶片上或视频监视器上显示。本文的其余部分总结了视觉检测方法,该方法至少需要与被检查的样本部分进行视觉接触。在得出视觉检测的定义时,文献中指出,在
摘要 近年来基于深度学习的目标检测框架取得了辉煌的成就。然而,现实生活中的交通标志检测仍然是大多数最先进的目标检测方法面临的巨大挑战。现有的深度学习模型不足以有效地从现实条件下的大图像中提取小交通标志的特征。本文提出了一种基于高效端到端深度网络模型的新型小交通标志检测方法,解决了小交通标志检测难题。所提出的方法将三个关键见解融入已建立的You Only Look Once (YOLOv3) 架构和其他相关算法中,具有速度快、精度高的特点。此外,适当引入网络剪枝以最小化网络冗余和模型大小,同时保持有竞争力的检测精度。此外,还采用了四个尺度预测分支来显著丰富多尺度预测的特征图。在我们的方法中,我们调整损失函数以平衡误差源对总损失的贡献。通过在清华-腾讯100 K交通标志数据集上的实验进一步证明了网络的有效性和鲁棒性。实验结果表明,我们提出的方法比原始的YOLOv3模型取得了更好的准确率,与相关文献中的方案相比,我们提出的方法不仅在检测召回率和准确率上表现出色,而且在检测速度上也获得了1.9 – 2.7倍的提升。
摘要:癫痫是一种神经系统疾病。目前,约有 5000 万人患有癫痫。癫痫发作的检测非常困难,因为每个患者的癫痫发作情况都不同。脑电图 (EEG) 可捕捉大脑活动,神经科医生需要分析这些脑电图信号才能检测出癫痫发作。传统上,神经科医生通过目视检查来检测癫痫发作的存在,这需要时间。但需要在规定的时间内做出准确的诊断,以便可以采取适当的治疗方法并减少进一步的并发症。因此,需要一种自动方法来检测和预测癫痫发作。癫痫发作预测很重要,因为如果在早期预测到癫痫发作,那么可以使用电刺激来抑制癫痫发作。我们首先从用于检测和预测癫痫发作的不同算法或方法开始,然后对用于癫痫发作诊断的不同方法进行比较研究,然后提出我们提出的方法,最后得出结论。索引词:深度学习、癫痫发作、特征提取、发作、机器学习、预测、发作前、检测。
目视检查是迄今为止最常见的无损检测 (NDE) 技术(参考文献 1)。在尝试确定任何部件或样本是否适用于其预期应用时,目视检查通常是检查过程的第一步。通常,几乎任何样本都可以通过目视检查来确定其制造的准确性。例如,目视检查可用于确定部件是否按照正确的尺寸制造、部件是否完整或所有部件是否已正确组装到设备中(参考文献 2)。虽然直接目视检查是最常见的无损检测技术(图 1),但许多其他 NDE 方法需要视觉干预来解释在进行检查时获得的图像。例如,使用可见红色或荧光染料的渗透检查依赖于检查员目视识别表面指示的能力。磁粉检测与可见光检测技术和荧光检测技术属于同一类别,而射线照相技术则依赖于解释人员对射线图像的视觉判断,该图像可以显示在胶片上,也可以显示在视频监视器上。本文的其余部分对目视检测方法进行了总结,该方法至少需要与被检测样本的部分进行视觉接触。在对目视检测进行定义时,文献中指出,目视检测经验以及与经验丰富的目视检测员的讨论表明,这种 NDE 方法不仅包括眼睛的使用,还包括检测员使用的其他感觉和认知过程(参考文献 3)。因此,现在文献中对目视检测有了扩展的定义:“目视检测是利用人类感觉系统检查和评估系统和部件的过程,仅借助放大镜、牙签、听诊器等机械增强感觉输入来辅助。”检查过程可以通过观察、聆听、感觉、嗅觉、摇晃和扭动等行为来完成。它包括一个认知部分,其中观察结果与结构知识以及服务文献中的描述和图表相关联(参考文献 3)。”