⋆该手稿由UT-Battelle,LLC共同撰写,根据与美国能源部(DOE)合同DE-AC05-00OR22725合同。美国政府保留和出版商,通过接受该文章的出版物,承认美国政府保留了非判定,有偿,不可撤销的,全球范围内的许可,以出版或复制本手稿的已发表形式,或允许其他人这样做,以实现美国政府的目的。DOE将根据DOE公共访问计划(http://entergy.gov / downloads / doe-public-access-plan),为联邦赞助研究的这些结果提供公众访问。∗对应作者。电子邮件地址:xuh4@ornl.gov(haowen xu),yuanj@ornl.gov(jinghui yuan),zhoua@ornl.gov(anye zhou),xug1@ornl.gov
* zhenlong@psu.edu摘要:由新兴的大语言模型(LLMS)提供支持,自主地理信息系统(GIS)代理有可能完成空间分析和制图任务。但是,存在一个研究差距来支持完全自主的GIS代理:如何使代理商发现和下载必要的数据进行地理空间分析。本研究提出了一个自主GIS代理框架,能够通过生成,执行和调试程序来检索所需的地理空间数据。该框架利用LLM作为决策者,从预定义的源列表中选择适当的数据源,然后从所选源中获取数据。每个数据源都有一个手册,可记录数据检索的元数据和技术细节。所提出的框架以插件样式设计,以确保灵活性和可扩展性。人类用户或自主数据刮擦者可以通过添加新手册来添加新的数据源。我们根据框架开发了原型代理,以QGIS插件(Geodata检索代理)和Python程序发布。实验结果证明了其从各种来源检索数据的能力,包括OpenStreetMap,美国人口普查局的行政界限和人口统计数据,来自ESRI World Imagery的卫星基本图,Opentopography.org的Global Digital Heipation.org,来自Opentopography.org的Global Digital Heipation.org,来自商业提供商的天气数据,来自Covid9 Case covid9 Case case the nytimmer github github github github。我们的研究是开发自主地理空间数据检索剂的首次尝试。
阿尔茨海默病和路易体病等神经退行性疾病引起的电生理紊乱可通过头皮脑电图检测出来,并可作为疾病严重程度的功能性测量指标。传统的脑电图定量分析方法通常需要先验选择具有临床意义的脑电图特征,而且容易产生偏差,限制了常规脑电图在神经退行性疾病诊断和管理中的临床应用。我们提出了一种数据驱动的张量分解方法,用于提取代表闭眼清醒状态下常见的脑电图活动来源的前 6 个频谱和空间特征。作为梅奥诊所神经系统评估的一部分,11,001 名患者接受了 12,176 项常规、标准的 10-20 次头皮脑电图研究。根据这些原始脑电图,我们开发了一种基于后部 alpha 活动和眼球运动的算法,用于自动选择清醒闭眼时期并估计每个通道 1 到 45 Hz 之间的平均频谱功率密度 (SPD)。然后,我们创建了一个三维 (3D) 张量 (记录 × 通道 × 频率),并应用典型多元分解来提取前六个因子。我们进一步确定了一组独立患者,他们符合阿尔茨海默病和路易体痴呆 (31) 导致的轻度认知障碍 (30) 或痴呆 (39) 的共识标准,以及年龄相似的认知正常对照 (36)。我们使用朴素贝叶斯分类方法评估了这六个因子区分这些亚组的能力,并评估了因子载荷与 Kokmen 心理状态简略测验评分、氟脱氧葡萄糖 (FDG) PET 摄取率和脑脊液阿尔茨海默病生物标志物测量值之间的线性关联。这些因子代表了具有生物学意义的大脑活动,包括后部 α 节律、前部 δ/θ 节律和中央顶叶 β,它们与患者年龄和脑电图节律失常等级相关。这些因素还能够以中等到高精度(曲线下面积 (AUC) 0.59–0.91)区分患者和对照组,以及区分阿尔茨海默病痴呆和路易体痴呆(AUC 0.61)。此外,相关的 EEG 特征与阿尔茨海默病亚组的认知测试表现、PET 代谢和 CSF AB42 测量值相关。这项研究表明,数据驱动的方法可以从人群水平的临床 EEG 中提取具有生物学意义的特征,而无需拒绝伪影或先验选择通道或频带。随着不断发展,这种数据驱动的方法可以通过协助早期识别轻度认知障碍和区分认知障碍的不同神经退行性原因来提高 EEG 在记忆护理中的临床效用。
摘要。大气环境监测卫星 (AEMS),也称为大旗一号或 DQ-1,于 2022 年 4 月发射;其主要有效载荷之一是高光谱分辨率激光雷达 (HSRL) 系统。这个新系统能够精确测量全球气溶胶的光学特性,在云气溶胶激光雷达和红外探路者卫星观测 (CALIPSO) 卫星退役后,可用于地球科学界。开发合适的检索算法并验证检索结果是必要的。本研究展示了一种使用 DQ-1 HSRL 系统的气溶胶光学特性检索算法。该方法检索了气溶胶的线性去极化率、后向散射系数、消光系数和光学深度。为了验证目的,我们将检索到的结果与通过 CALIPSO 获得的结果进行了比较。结果表明,两组数据的曲线高度一致,DQ-1 的信噪比 (SNR) 有所提高。美国国家航空航天局 (NASA) 微脉冲激光雷达网络 (MPLNET) 站的光学特性曲线被选中与 DQ-1 测量值进行验证,相对误差为 25%。2022 年 6 月至 2022 年 12 月期间,使用 DQ-1 卫星和 AErosol RObotic NETwork (AERONET) 进行的气溶胶光学深度测量进行了关联,得出的 R 2 值等于 0.803。我们使用 DQ-1 数据集初步研究了撒哈拉沙尘和南大西洋的输送过程
目的:随机过程是电气工程研究生研究的核心课程,对于那些希望专门从事沟通,控制,信号处理和网络的人来说,必不可少的课程。主题对于其他领域(例如机器学习,财务工程,操作研究和算法设计)也非常有用。本课程的主要目的是向学生介绍对概率,随机变量和随机信号(或随机过程)的严格且相当全面的看法。课程的第一部分将从概率和随机变量的全面视图开始。将研究条件概率和期望的概念。一旦看到基础知识,我们将研究随机现象的研究中所需的重要结果,因为它们在信号和噪声的建模中表现出来,即独立性,正常性等。基于这些,我们将研究关键结果,例如中心限制定理,大量定律和收敛概念。本课程的后三分之一将专门研究重要的信号模型,尤其是所谓的广泛固定过程的理论。该课程将以对马尔可夫连锁店的介绍为结束,这些链条是建模和算法开发的通用过程。总体目的是为学生提供与随机过程相关的潜在结构,特别是作为信号和系统模型,并学习在涉及随机现象的应用中工作的主要工具。
1 ST信息文档获取1995 2 nd +导航 +文档关系 +达到1998 3 rd +交易 +搜索垂直行业 +执行2002 4 th +合成 +生成模型 +浓缩模型 +凝结2023
精确肿瘤学的快速增长的领域通常致力于根据其临床表型和基因型来确定针对个体患者量身定制的个性化癌症治疗计划,其特征是分子分析[1]。实际上,确定这些治疗方法依赖于专家医学知识的独特组合,来自患者的整个临床和基因组病史的数据,以及在知识库,元知识基础和出版文献中记录的建议和最新发现。这最后一个组件是时间密集型,即使对于专家来说,也有很大的兴趣,即开发自动化的知识生成方法,目的是将文献变成(可行的)知识。最近的生成人工智能的激增引起了人们对高级大语模型(LLM)在生物医学上的应用,但是很少有组织拥有训练或调整这些模型的特定任务的资源。检索提示世代(RAG)[2]的技术可以代表一个中间立场,其中搁置的(开源或专有)LLM与Contextual 1相应的作者配对:Johns Hopkins University,Baltimore,Baltimore,MD,MD,United States,United States,美国MD;电子邮件:kkreime1@jhu.edu。
摘要。虽然生成建模在整个研究领域都普遍存在,但其整合到图像检索领域中仍然在很大程度上没有探索和不合理。在本文中,我们提出了一种新颖的方法,将图像检索重新构图为生成建模的变体,并采用了序列与序列模型。这种方法与当前研究中统一的趋势和谐相吻合,并提出了一个具有凝聚力的框架,可以进行端到端的差异搜索。这又通过直接优化技术促进了出色的性能。我们的模型的开发被称为IRGEN,它解决了将图像转换为简洁的语义单元序列的关键技术挑战,这对于实现效率有效的搜索至关重要。广泛的实验表明,与先前的竞争检索方法相比,我们的模型在三个广泛使用的图像检索基准和200万尺度的数据集上实现了最先进的性能,从而产生了很大的改善。此外,生成建模所促进的精确分数的显着激增列出了绕过重读阶段的潜力,在实际检索工作流程中,这在传统上是必不可少的。该代码可在https://github.com/yakt00/irgen上公开获取。
摘要 量子计算 ( QC ) 是计算科学中一个新兴领域,由于其具有开创性应用的潜力,吸引了大量研究兴趣。事实上,人们相信 QC 可以通过显著减少解决问题所需的时间来彻底改变我们解决非常复杂问题的方式。尽管 QC 仍处于发展的早期阶段,但已经可以使用量子计算机解决一些问题,从而开始看到它的潜力。因此,QuantumCLEF 实验室的目标是提高人们对 QC 的认识,并开发和评估新的 QC 算法,以解决在实现信息检索 ( IR ) 和推荐系统 ( RS ) 时通常面临的挑战。此外,这个实验室为人们提供了一个接触 QC 技术的好机会,由于这些技术还处于早期发展阶段,因此通常不易获得。在本文中,我们概述了 QuantumCLEF 的第一版,该实验室专注于应用量子退火 ( QA ),一种特定的 QC 范例,来解决两个任务:IR 和 RS 系统的特征选择,以及 IR 系统的聚类。共有 26 个团队注册了该实验室,最终有 7 个团队按照实验室指南成功提交了他们的运行。由于主题新颖,我们为参与者提供了许多示例和全面的材料,以帮助他们了解 QA 的工作原理以及如何编写量子退火程序。
