我们的大脑不仅仅是身体里的一块脂肪。它是人体的动力源,也是各种活动的控制中心。[1] 我们的身体有一种不同的系统来控制我们身体部位的各种活动。这就是神经系统,它还涉及大量的人体神经和细而大的结构,即脊髓。它是一个复杂而强大的神经集合,是任何生物都必须拥有的电线。这个系统被称为控制各种身体部位的神经元。在人脑中,73% 的身体部分由水组成。[2] 中枢神经系统包含一个主要部分,称为大脑。大脑被坚硬的头骨覆盖。实际上,大脑在头骨中的液体中游动。它负责认知功能、执行功能,并调节神经系统其他部分的功能。神经系统控制着从肌肉到整个身体感官的一切。[3-5]
随着人工智能 (AI) 的发展,交互式人工智能 (IAI) 的概念被引入,它不仅可以交互式地理解和响应人类用户输入,还可以响应动态系统和网络条件。在本文中,我们探讨了 IAI 在网络中的集成和增强。我们首先回顾人工智能的最新发展和未来前景,然后介绍 IAI 的技术和组件。然后,我们探讨了 IAI 与下一代网络的集成,重点关注隐式和显式交互如何增强网络功能、改善用户体验和促进高效的网络管理。随后,我们提出了一个支持 IAI 的网络管理和优化框架,该框架由环境、感知、动作和大脑单元组成。我们还设计了一个可插入的大型语言模型 (LLM) 模块和检索增强生成 (RAG) 模块,以构建大脑单元决策的知识库和上下文记忆。我们通过案例研究证明我们的 IAI 框架可以有效地执行优化问题设计。最后,我们讨论了基于 IAI 的网络的潜在研究方向。
图2从IVH患者的CSF中分离NSC样细胞。A分离后不同日期(DIV)的CSF衍生的NSC培养物的相位对比度显微照片。比例尺:100μm。 B,在Matrigel上生长的3种代表性NSC线的指数生长动力学。c,早期(0)和晚期(10)段的细胞的相对对比显微照片,在基质中生长。d,通过对早期(3)和晚期(7)通道的KI-67表达进行定量评估增殖。显示了代表性共焦部分。比例尺25μm。 E,早期(3)和晚(7)通道的CD133,CD24,CD34和CD45的流式细胞仪分析。条件之间没有显着差异。数据显示为5-7个独立生物样品的平均值±SEM。42周大的病例(粉红色符号)被排除在进一步分析之外。f,在早期和晚期与CD133共表达与CD24和CD34的共表达。g,从CSF获得的NSC样细胞和分离后13天后从CSF获得的代表性显微照片。比例尺:100μm。 H,通过从CSF获得的NSC样细胞流式细胞术和通过CSF和通道3的灌洗液进行的CD133分析。* p <.05
在线错误信息的扩散对公众造成了重大威胁。虽然许多在线用户积极参与反对错误信息的战斗,但由于缺乏礼貌和支持事实,许多这样的回应都可以使人具有特色。作为解决方案,提出了文本生成方法,以自动产生反误导响应。尽管如此,存在的方法通常是端对端训练的,没有利用外部知识,从而产生了低等的文本质量和过度重复的重音。在本文中,我们提出了在线误导(RARG)的检索响应产生,该响应产生从科学来源收集支持证据,并根据证据产生反弥散性响应。尤其是我们的RARG由两个阶段组成:(1)收集证据,我们在其中设计了一个检索管道来检索和重读证据文件,该数据库使用数据库包含100万个学术文章; (2)响应产生,其中我们调整大型语言模型(LLM),以通过从人类反馈(RLHF)学习来生成基于证据的重音。我们提出了一种奖励功能,以最大程度地利用检索到的证据,同时保持生成的文本的质量,从而产生礼貌和事实的回应,这些反应明显驳斥了错误的信息。为了证明我们方法的有效性,我们研究了Covid-19的案例,并对内部和跨域数据集进行了广泛的实验,在该数据集中,RARG始终通过产生高质量的反透明信息响应来表现基准。
作为供应链的复杂性和动态挑战传统管理方法,集成大型语言模型(LLM)和知识图(KGS)是推进供应链分析的有前途的方法。本文提出了一种方法,该方法旨在利用LLMS和KGS之间的协同作用,特别着眼于增强供应商发现实践。主要目标是将大量的非结构化供应商能力数据转换为统一的KG,从而改善供应商的发现过程并增强制造商的可访问性和发现性。通过本体驱动的图形构建过程,提出的方法将KGS和基于LLM的先进的自然语言处理技术整合在一起。借助详细的案例研究,我们展示了这种综合方法不仅如何提高答案质量并提高中小型制造商的可见性,还可以增强敏捷性,并为供应链管理提供战略见解。[doi:10.1115/1.4067389]
检索授权的语言模型(RALM)将大型语言模型(LLM)与矢量数据库结合在一起,以检索文本生成期间的上下文知识。这种策略即使使用较小的模型也有助于产生令人印象深刻的发电质量,从而通过数量级来调查计算需求。为了有效而灵活地为Ralms提供服务,我们提出了Chameleon,这是一种杂项加速器系统,将LLM和矢量搜索加速器集成在分解的体系结构中。异质性在推理和检索方面有效地提供了有效的服务,而分类允许独立缩放LLM和向量搜索加速器来满足各种RALM要求。我们的变色龙原型在FPGAS上实现了向量搜索加速器,并将LLM推理分配给GPU,并用CPU作为群集坐标。与混合CPU-GPU架构相比,在各种RALMS上进行了评估,延迟降低2.16倍,吞吐量的延迟3.18倍。有希望的结果为采用异质加速器的方式铺平了道路,不仅是LLM推断,而且还可以在未来的RALM系统中进行矢量搜索。
第二次世界大战后,世界各地开始开设众多电影资料馆,国际电影档案联合会 (FIAF) 的活动也重新兴起,促成了展览巡回,公众通过展览重新接触档案电影 (Tadeo Fuica 2019: 28–32)。这促使人们质疑当时之前电影史的书写方式,并引发了一场深刻的史学辩论。针对莫里斯·巴代什 (Maurice Bardèche) 和罗伯特·布拉西拉赫 (Robert Brasillach) (1935) 等人撰写的历史,这些历史大多基于电影爱好者的记忆,乔治·萨杜尔 (George Sadoul) (1946、1947、1948、1949) 和让·米特里 (Jean Mitry) (1968) 等作者开发了更为严格的方法论,强调了观看电影和情境化的重要性 (Louis 2020: 117–30)。几十年后,档案管理员保存材料的需求和学术界重新接触历史方法的意愿相结合,为该领域的新转折做好了准备 (Elsaesser 2012: 592–93)。1978 年布莱顿 FIAF 大会被广泛认为是实现这一变化的事件,因为它为学者们提供了观看早期电影档案片段的机会(Gaudreault 等人2012: 3)。与档案珍品的接触使研究人员能够重新审视当时一直沿用的目的论方法,这种方法将早期电影边缘化并低估了早期电影(Gaudreault 和 Gunning 1989)。这次大会还强调了档案保管员和历史学家之间合作的必要性,以推动该学科的发展(Gaudreault 2006,Gunning 2006)。
目的:随机过程是电气工程研究生研究的核心课程,对于那些希望专门从事沟通,控制,信号处理和网络的人来说,必不可少的课程。主题对于其他领域(例如机器学习,财务工程,操作研究和算法设计)也非常有用。本课程的主要目的是向学生介绍对概率,随机变量和随机信号(或随机过程)的严格且相当全面的看法。课程的第一部分将从概率和随机变量的全面视图开始。将研究条件概率和期望的概念。一旦看到基础知识,我们将研究随机现象的研究中所需的重要结果,因为它们在信号和噪声的建模中表现出来,即独立性,正常性等。基于这些,我们将研究关键结果,例如中心限制定理,大量定律和收敛概念。本课程的后三分之一将专门研究重要的信号模型,尤其是所谓的广泛固定过程的理论。该课程将以对马尔可夫连锁店的介绍为结束,这些链条是建模和算法开发的通用过程。总体目的是为学生提供与随机过程相关的潜在结构,特别是作为信号和系统模型,并学习在涉及随机现象的应用中工作的主要工具。
常规数据分析通常无法捕获添加剂制造(AM)过程的复杂背景,从而导致尖锐的解决方案和次优的分析结果。生成人工智能(Genai)模型(例如大语言模型(LLM))的性能在很大程度上取决于它们整合和背景培训的大量数据的能力。但是,情境化通常是由消耗的数据直接驱动的,而不一定基于基本真理。为了解决这个问题,提出了一种基于本体的检索增强发电(RAG)方法,以增强Genai产生相关提示和答案的能力。Genai通过利用结构的本体论来识别和应用相关背景,从而产生准确而有见地的解释。用例展示了拟议的基于本体的RAG框架如何运作以提供上下文感知的AM数据分析,这些数据分析可以通过执行AM数据分析时通过基本真理来促进分析透明度。
在这种变革性的景观中,检索增强的一代(RAG)已成为一种企业用例的验证方法。rag是一种通过与外部知识来源集成来增强大语模型(LLM)的技术。这种方法利用预先训练的LLM之外的其他信息来提高其性能并产生更明智和准确的响应。通过使企业能够利用数据泛滥,并将其引导到可行的情报中,RAG代表了一个良好的解决方案,对于应对数据过度的组织和精确驱动的决策做出的必要性。