常规数据分析通常无法捕获添加剂制造(AM)过程的复杂背景,从而导致尖锐的解决方案和次优的分析结果。生成人工智能(Genai)模型(例如大语言模型(LLM))的性能在很大程度上取决于它们整合和背景培训的大量数据的能力。但是,情境化通常是由消耗的数据直接驱动的,而不一定基于基本真理。为了解决这个问题,提出了一种基于本体的检索增强发电(RAG)方法,以增强Genai产生相关提示和答案的能力。Genai通过利用结构的本体论来识别和应用相关背景,从而产生准确而有见地的解释。用例展示了拟议的基于本体的RAG框架如何运作以提供上下文感知的AM数据分析,这些数据分析可以通过执行AM数据分析时通过基本真理来促进分析透明度。