摘要 — 植入式传感器具有实时监测和空间映射能力,正成为下一代精准医疗中越来越重要的一个方面。微加工传感器系统是一种流行的选择,因为它们具有小型化、可重复批量生产和大量预先存在的传感器原型的能力。尽管有发展的动力,但将这些传感器封装在体内环境中以及植入过程本身仍然是一个巨大的挑战。本文介绍了微电子测试结构,可用于以标准化方式评估、比较和优化植入式封装解决方案。所提出的结构用于研究:(i) 材料的图案化能力、(ii) 绝缘材料的渗透性、(iii) 封装材料与芯片的粘附性,以及 (iv) 封装对通过针头植入的物理稳健性。它们用于表征使用生物相容性环氧树脂的示例封装策略。此外,还介绍了一种使用测试结构优化封装性能的方法。
基于苯硼酸的水凝胶夹层射频 (RF) 谐振器被证明是一种用于监测葡萄糖的高响应、无源和无线传感器。结构由未锚定的电容耦合开口环组成,中间是葡萄糖响应水凝胶。苯硼酸水凝胶会根据环境葡萄糖浓度表现出体积和介电变化——这些变化被有效地转化为夹层 RF 传感器谐振响应的大幅变化。这些微型、可拉伸和可扩展的传感器(5 毫米 × 5 毫米 × 250 微米)不需要传感节点的微电子或电源,可以通过近场耦合远程读取。传感器表现出高灵敏度(每 150 毫克/分升葡萄糖谐振频率偏移约 10%——相当于 50 MHz),检测限为 10 毫克/分升,对碳水化合物浓度突然变化的阶跃响应时间约为 1 小时。值得注意的是,这些传感器在本文描述的时间段内(室温下 45 天)没有表现出信号漂移或滞后现象。我们通过连接单个 LED 将传感器转变为生物电子 RF 报告标签——它们通过发射光远程报告葡萄糖浓度。我们预计,RF 读出和苯硼酸基水凝胶的非降解性和长期性将使生物传感器能够长期远程读取葡萄糖。
a 亚利桑那大学生物医学工程系,亚利桑那州图森市 85721;b 乔治华盛顿大学生物医学工程系,华盛顿特区 20052;c 西北大学生物集成电子中心,伊利诺伊州埃文斯顿市 60208;d 亚利桑那大学神经科学系,亚利桑那州图森市 85721;e 亚利桑那大学神经科学研究生跨学科项目,亚利桑那州图森市 85721;f 西北大学发育治疗核心,伊利诺伊州埃文斯顿市 60208;g 西北大学高级分子成像、放射学和生物医学工程中心,伊利诺伊州埃文斯顿市 60208;h 亚利桑那大学 Bio5 研究所,亚利桑那州图森市 85721;i 亚利桑那大学神经病学系,亚利桑那州图森市 85721; j 西北大学范伯格医学院,伊利诺伊州埃文斯顿 60208;k 西北大学电气工程与计算机科学系,伊利诺伊州埃文斯顿 60208;l 西北大学神经外科系,伊利诺伊州埃文斯顿 60208;m 西北大学化学系,伊利诺伊州埃文斯顿 60208;n 西北大学机械工程系,伊利诺伊州埃文斯顿 60208;o 西北大学材料科学与工程系,伊利诺伊州埃文斯顿 60208;p 亚利桑那大学电气与计算机工程系,亚利桑那州图森 85721
下面总结的临床数据基于可用的同行评审的已发表文献,这些文献针对的是类似的可植入脊髓刺激 (SCS) 系统。PRECISION™ 系统与已发表文献中报道的 SCS 系统在预期用途、目标患者群体、技术、设备设计和输出特性方面相似。有效性分析中包括三项符合有效性特定纳入和排除标准的关键研究。安全性分析中包括共 11 项符合安全性特定纳入和排除标准的研究。有效性数据代表总共 116 名植入 SCS 系统的患者,而安全性数据代表总共 1056 名意向治疗患者和 880 名永久植入患者。
