单位-VI:植物的内部组织:开花植物的组织学和解剖学:组织 - 类型,结构和功能;分生物:永久组织 - 简单而复杂的组织。组织系统 - 类型,结构和功能;表皮,地面和血管组织系统。二核和单子叶植物的解剖结构 - 根,茎和叶,双子茎和双子根的二级生长。单位-VII:植物生态学:生态适应,继任和生态服务:简介。植物群落和生态适应:氢植物,叶肉和叶叶植物。植物继承。生态服务固定,氧气释放以及如何维持生态功能。UNIT-VIII: PLANT PHYSIOLOGY: Transport in Plants : Means of Transport- Diffusion, Facilitated Diffusion, Passive symports and antiports, Active Transport, Comparison of Different Transport Processes, Plant-Water Relations- Water Potential, Osmosis, Plasmolysis, Imbibition, Long Distance Transport of Water- Water Movement up a Plant, Root Pressure, Transpiration pull, Transpiration- Opening and Closing of Stomata, Transpiration and光合作用 - 矿物营养素的折衷吸收和运输 - 矿物离子的摄取,矿物离子的易位,韧皮部的运输:从源到水槽的流动 - 压力流量或质量流量假设。酶:化学反应,酶转化,酶作用的性质,影响酶活性,温度和pH值的因素,底物的浓度,酶的分类和命名法,副因素。矿物质营养:研究植物的矿物质需求,必不可少的矿物元素 - 必不可少的标准,大量营养素,微量营养素,宏观的作用,宏观和微观 - 养分 - 基本元素的缺乏症状,微生酸的毒性,微量营养素的毒性,微量营养素的毒性,元素吸收的机制,肯定的元素,土壤的吸收机制 - 土壤的综合元素 - 土壤疾病,疾病 - 土壤的综合元素,源于土壤的疾病,源自氮循环,生物氮固定,共生氮固定,结节形成。Photosynthesis in Higher Plants : Early Experiments, Site of Photosynthesis, Pigments Involved in Photosynthesis, Light Reaction, The Electron Transport-Splitting of Water, Cyclic and Noncyclic Photo-phosphorylation, Chemiosmotic Hypothesis, Biosynthetic phase- The Primary Acceptor of CO2, The Calvin Cycle, The C4 Pathway, Photorespiration, Factors affecting Photosynthesis.植物的呼吸:细胞呼吸,糖酵解,发酵,有氧呼吸 - 三羧酸循环,电子传输系统(ETS)和氧化磷酸化,呼吸平衡表,两性途径,两性途径,呼吸商,呼吸商。植物生长和发育:植物生长,生长阶段,生长速率,生长条件,分化,去分化和重新分化,发育,植物生长,调节剂 - 植物生长调节剂的生理影响,生长素,gibberellins,gibberellins,cytokinins,entokinins,ethytokinins,ethylene,乙烯,超酸种子病毒不相同,光疗法,veroperiodism,Veroperionisp。
●密苏里植物园是世界上最大的草药之一的所在地,是植物学最伟大的发展之一。●草药是世界上保存的植物标本的图书馆,提供了有关植物多样性,分布,地理和生态学的基本信息。●革命性物种识别(RSI)项目是一项变革性的计划,旨在将密苏里植物园广泛的植物标本室收藏数字化。该项目将利用最先进的人工智能(AI)技术来加速植物物种识别识别,这将为全球的恢复和保护工作提供依据。●AI技术将自动检测到独特的植物特征,该特征将用于创建植物特征的在线参考库。然后,科学家将能够将图像和其他数据从不明的工厂上传到一个新的项目网站,以快速自动化物种识别。●除了加速全球恢复和保护工作外,该项目还可以通过在植物分类学和制药室创建植物分类法和制造植物分类方面提供宝贵的培训计划来开发下一代植物专家。●这项具有里程碑意义的计划是由匿名$ 1440万美元的赠款(近年来植物学最大的赠款)在未来六年内将600万个植物标本在线上带来600万个植物标本的可能性,使全球科学家,保护主义者和政策制定者可以免费访问关键数据。
现在比以往任何时候都更明显地对气候弹性的需求更为明显,气候变化的阴影对我们的未来产生了巨大的不确定性。这种紧迫性在农业中显着相交,在农业中,实现粮食安全的双重目标以扩大全球人口和采用可持续生产实践至关重要。可持续农业的核心是对营养物质的有效利用,尤其是氮,鉴于其对农作物生产力和环境福祉的深远影响。由于气候变化,天气不足,温度升高以及影响农作物吸收的养分吸收和肥料的有效性,养分管理的复杂性被气候变化所增强。因此,优化养分管理超越了提高产量;这是关于强化农业反对气候诱发的逆境。在农业方面的最新技术进步已经在提高养分效率方面的归零,这标志着在升级气候和环境挑战的研究中,研究中的关键时刻。研究现在必须集中于在不断发展的天气条件下不同作物的精确需求,同时优先考虑土壤和节水,并降低温室气体的排放。从经济上讲,使这些创新负担得起和可扩展的农民至关重要。但是,此类创新的可伸缩性,成本和农民的可及性,尤其是在不太发达地区的,需要仔细考虑。将这些技术适应各种农作物和气候提出了其他挑战。这篇社论封装了最近发现对营养效率和气候弹性的本质和含义,主张未来,高级技术符合可持续的农业以以环保的方式确保食品。Bhavya等人的文章。对CO 2水平升高如何影响水稻种植有细微的理解,特别关注产量,质量和营养含量。在增加的CO 2条件下,耕种者的数量有所增加,但
植物暴露于与其他生物体相互作用引起的生物胁迫。这会导致对其增长,发展和生产力的不利影响。植物已经发展出了复杂的防御机制来保护自己,包括感测生物提示,信号转导,转录物重编程,蛋白质以及代谢物水平以增强其防御状态。植物的一种重要大量营养素是钙,它在控制植物性相互作用的早期信号通路中起着重要作用。植物会响应害虫或病原体攻击而产生钙特征,该钙具有信号。为了激活防御机制,这些信号由钙传感器检测到,然后发送到下游信号传导组件。Our comprehension of the biochemical and molecular elements of calcium signaling, such as Calmodulin (CaM), CaM-like proteins (CML), Calcineurin B-like proteins (CBL), Calcium dependent protein kinases (CDPKs) and their transporters viz Cyclic nucleotide gated channels (CNGCs), two pore channels (TPCs), Annexins,谷氨酸样受体通道,Ca 2+ /阳离子交换器(CCXS),Ca 2+ -ATPases,Ca 2+ /H+交换器(CAXS)最近已进展。即使已经进行了许多尖端研究,但对于钙信号通路的完整组件的解码及其与其他相关相关的途径(例如活化蛋白激活的蛋白质激酶(MAPK)途径,病原体和pest相互作用时)的解码知之甚少。在本研究主题中,Neelam等。防御信号系统是通过基因组编辑和基因工程,科学家将能够修改钙信号系统及其成分,这些钙在植物防御中至关重要,以产生对虫害和疾病更具耐药性的植物。强调了钙信号通路在植物对有害和有用的微生物的反应中的关键参与,从而阐明了这些相互作用的复杂动力学。
转座因子 (TE) 是真核生物基因组中不可或缺的组成部分,在基因调控、重组和环境适应中发挥着多种作用。它们在基因组内移动的能力导致基因表达和 DNA 结构变化。TE 是遗传和进化研究的宝贵标记,有助于遗传图谱和系统发育分析。它们还通过促进基因重排(导致新的基因组合)来深入了解生物体如何适应不断变化的环境。这些重复序列对基因组结构、功能和进化有重大影响。本综述全面介绍了 TE 及其在生物技术中的应用,特别是在植物生物学中,由于其广泛的功能,它们现在被认为是“基因组黄金”。本文讨论了 TE 在植物发育中的各个方面,包括其结构、表观遗传调控、进化模式以及它们在基因编辑和植物分子标记中的应用。目标是系统地了解 TE 并阐明它们在植物生物学中的多种作用。
绿色,浅层混合和白色的芽均已筛选以确定切割效率。之后,我们验证了只有白色和淡色的材料的整体平均值约为50%+的编辑效率(板上的白色芽/总芽)。
硅(Si)越来越被公认为是一种有益的因素,可显着提高作物的生长和生产力,尤其是面对各种非生物和生物胁迫。其在应激条件下保护植物方面的作用以及改善植物的整体适应性,引起了研究人员和农艺学家的极大关注。值得注意的是,最近的研究表明,即使没有压力,SI也可以提供好处,这表明其以可持续的方式增强植物营养和生产力的潜力(Prado,2023; Verma等,2023)。通过缓解压力的不利影响和促进增长,SI有助于可持续的农业实践,与对环保农业解决方案的需求保持一致(Prado等,2024)。农作物中各个地区的营养疾病在全球各个地区都普遍存在,并且SI已被证明可以增强对降低的耐受性(Alves等,2024; Teixeira等人。; Silva等,2021; Teixeira等人,2021)以及毒性(Alves等,2023; SousaJúnior等,2022; Barreto等,2022)。这种双重能力使SI成为改善植物健康和农业弹性的关键组成部分。随着气候变化的影响加剧,干旱,盐度和冷应激等因素构成了对植物活力的显着威胁。这些压力源是由于农业实践不足和肥料成本上升而加剧了迫切需要采用提高作物生产力的策略,同时又将这种挑战降至最低,尤其是在农作物中(Verma等,2024年)。在过去的二十年中,科学界关于SI在土壤和植物系统中的作用的兴趣显着提高。迄今为止的研究发现很有希望,表明SI可以在不断变化的气候下有效缓解各种压力,并增强农业弹性,在我们对土壤植物相互作用所涉及的机制的理解方面取得了显着的进步。在这个专门的研究主题中,我们策划了一系列研究,这些研究深入研究了SI在增强土壤植物动力学中的多方面作用。一个重要的贡献是Teixeira等人的作品。,重点是SI在能量甘蔗中的作用。鉴于其可再生能源生产的潜力,能量甘蔗对于可持续农业实践至关重要。然而,该研究强调了碱性土壤中的铁缺乏症所带来的挑战。作者证明了SI增强了铁的吸收,从而提高了营养效率和光合作用,最终导致增加
关于会议,正在组织有关科学,商业和人文新兴趋势的国际跨学科会议,以将来自各个领域的学科专家,崭露头角的研究人员和年轻专业人员汇集在一起。会议的目标是创建一个空间,让参与者有机会呈现其最新的研究结果,与专家互动,交流思想互动,并讨论影响科学,商业和人文学科的关键挑战。本次会议将为各个学科的杰出学科专家提供纸质演讲,讨论和邀请演讲的机会。会议将旨在鼓励合作,并就这些领域的挑战和机遇提供新的观点。
由于人口不断增长,粮食安全问题变得十分重要。作为固着生物,植物已经进化出复杂的机制来应对病原体。植物的生长发育需要营养物质的获取和运输,这些营养物质介导植物细胞信号传导并激活促生长和/或抗病原体基因的表达。营养物质,包括糖和氨基酸,是高产作物生产所必需的,但也与植物-微生物相互作用密切相关。微生物利用多种策略来适应植物,包括增强根细胞表面以吸收营养、竞争环境营养、劫持植物营养以及改变细胞营养运输和信号传导。这些有益或有害的影响会导致植物微生物群的转变。因此,分析营养物质在植物防御中的作用对于提高施肥效率至关重要。镰刀菌穗枯病 (FHB) 严重威胁小麦的质量和产量。赵等人。对抗性基因型苏麦3号和感病基因型山农20接种禾谷镰刀菌后代谢产物进行了分析,结果表明,不同品种间部分氨基酸含量发生了明显变化,外源施用脯氨酸(Pro)和丙氨酸(Ala)可增强小麦对禾谷镰刀菌的抗性,而外源施用半胱氨酸(Cys)则加重小麦的感病性,说明小麦的氨基酸代谢与抗性密切相关。尖镰孢菌是引起烟草根腐病的主要病原菌,严重影响烟草的生长。200F 的毒力测定 . oxysporum 菌株的鉴定以及表达模式的鉴定表明基因与毒力水平呈正相关,并表明 ATP 合成酶基因通过抑制烟草中糖最终输出转运蛋白 (SWEETs) 的表达水平对 F. oxysporum 的毒力很重要 [Gai et al.]。根结线虫 Meloidogyne incognita 感染显著改变了拟南芥中 SWEETs 的表达水平。组织学和遗传分析表明,M. incognita 感染诱导 AtSWEET1 在瘿中特异性表达,突变
联合国成员国在2015年采用的可持续发展目标(SDG)认识到需要可持续农业,这将使人类的生计和保护环境有益。随着对食品,饲料,饲料和生物燃料生产的需求继续加剧,气候变化的影响(SDG 17)和相关的环境因素仍然是农业的关注。在全球范围内,现代技术在农业中的应用,例如精确耕作技术(例如,GPS引导的拖拉机,无人机和传感器),生物技术(包括遗传工程和分子育种),人工智能(AI)和Robotics和Robots在高度的研究中遇到了重要的研究,并且是多元化的研究,并且是多样化的研究,并且是多元化的研究。营养丰富的作物品种(Abiri等,2023; Ivezic ́等,2023)。例如,生物技术系统(例如使用植物激素在维持植物生产力中)在农业生产力中表现出巨大的潜力。植物激素,通常被视为植物生长调节剂(PGR),是关键信号分子,在有利且不利的条件下调节植物生理和生化过程(El Sabagh等,2022)。这些多样化的植物激素[ 2016)。
