同种异体造血细胞移植(HCT)在过去几十年中,通过增强的支持性护理,降低强度调节(RIC),改善人类白细胞抗原(HLA)键入以及新型的移植物抗疗法 - 抗疗法疾病(GVHD) - 抑制和治疗策略和治疗策略。最值得注意的是,移植后环磷酰胺(PTCY)的实施显着提高了这种挽救生命疗法的安全性和可用性。随着这些进步的降低,非船舶死亡率(NRM),HCT社区更加重视发展减少复发的方法 - HCT后的主要死亡原因。使用RIC HCT时,免受复发的保护主要依赖于移植物 - 白细胞(GVL)反应。供体淋巴细胞输注(DLI),继发性细胞疗法,检查点抑制和HCT后维持策略代表了旨在增强或与HCT的GVL效应协同作用的方法。优化供体选择算法以利用GVL代表了另一个活跃的研究领域。这些策略中有许多旨在利用T细胞的影响,T细胞的影响数十年来一直是GVL的主要介体,也是调查重点减少。但是,利用自然杀手(NK)细胞产生有效抗肿瘤作用的能力的兴趣越来越大。基于NK细胞的方法比T细胞介导的潜在优势是减少NRM的潜力。大多数以T细胞为中心的复发预防策略必须权衡复发减少的好处,而GVHD的NRM风险增加。通过减少感染,而不会增加GVHD的风险,NK细胞可能会减轻NRM,同时仍然通过鉴定和清除癌细胞而减少复发。相比之下,NK细胞有可能减少两者,并有可能明显地倾斜量表,以支持生存。在这里,我们将回顾NK细胞在GVL中的作用,NK细胞匹配或不匹配的优化以及NK细胞疗法研究的迅速研究领域,例如收养转移和嵌合抗原受体(CAR)NK细胞。
关于会议,正在组织有关科学,商业和人文新兴趋势的国际跨学科会议,以将来自各个领域的学科专家,崭露头角的研究人员和年轻专业人员汇集在一起。会议的目标是创建一个空间,让参与者有机会呈现其最新的研究结果,与专家互动,交流思想互动,并讨论影响科学,商业和人文学科的关键挑战。本次会议将为各个学科的杰出学科专家提供纸质演讲,讨论和邀请演讲的机会。会议将旨在鼓励合作,并就这些领域的挑战和机遇提供新的观点。
●密苏里植物园是世界上最大的草药之一的所在地,是植物学最伟大的发展之一。●草药是世界上保存的植物标本的图书馆,提供了有关植物多样性,分布,地理和生态学的基本信息。●革命性物种识别(RSI)项目是一项变革性的计划,旨在将密苏里植物园广泛的植物标本室收藏数字化。该项目将利用最先进的人工智能(AI)技术来加速植物物种识别识别,这将为全球的恢复和保护工作提供依据。●AI技术将自动检测到独特的植物特征,该特征将用于创建植物特征的在线参考库。然后,科学家将能够将图像和其他数据从不明的工厂上传到一个新的项目网站,以快速自动化物种识别。●除了加速全球恢复和保护工作外,该项目还可以通过在植物分类学和制药室创建植物分类法和制造植物分类方面提供宝贵的培训计划来开发下一代植物专家。●这项具有里程碑意义的计划是由匿名$ 1440万美元的赠款(近年来植物学最大的赠款)在未来六年内将600万个植物标本在线上带来600万个植物标本的可能性,使全球科学家,保护主义者和政策制定者可以免费访问关键数据。
MMK和SDM Mahila Mahavidyalaya是SDM教育协会下56个机构中唯一的妇女学院,在体现了赋予妇女权能的主要目标时,拥有一个特殊的位置。I am happy to observe that the institution is working hard and smart to fulfill the vision statement “Empowerment of Women to Face the Global Challenges” through building networks with high profile and premier institutions of our country.的确,我感到满意的是,MMK和SDM MMV和IBAB,班加罗尔的谅解备忘录已成功交换,并且该谅解备忘录通过全国会议而活跃起来是其活动之一。我祝贺组织团队和IBAB联合在一起,通过关注一个与自然心脏(即植物科学)接近的主题,以丰富我们的学生和学者。我敢肯定,在暴露于植物化学的证据驱动结果的情况下,观众将以更广泛的视角欣赏这个主题。
家族的Cyperaceae,也称为Sedge家族,在分布中是国际化的,在血管中是第10个最丰富的物种家族,在单核叶中是第三个家族,在全球范围内有5687种。植物群体发展了许多自适应特征,从而导致他们在从海平面到高山的各种栖息地成功建立。Cyperaceae的成员在对人类的服务方面在生态和经济上在经济上很重要,但由于他们对农业的干扰,因此作为世界上最臭名昭著的杂草而获得的。以下四个氰化物; C. Rotundus,C。Esculentus,C。Difformis和C. Iria被列为世界上最糟糕的33种杂草。从进化的角度来看,它们是最突出的殖民者,从而改善了土壤健康,因此从保护的角度来看,它们应该得到更好的治疗。
▪使用自定义的单链寡核苷酸来干扰目标基因内复制叉处的DNA复制,从而导致将所需碱(因此,突变)引入DNA中。▪使用:在设计寡核苷酸是互补的精确位置中引入非随机突变(例如,基本变化)。▪非转基因作为产品
本综述总结了对植物育种中定量性状的仿真研究的发现,并将这些见解转化为实际方案。作为农业生产力面临着越来越多的挑战,植物育种对于解决这些问题至关重要。模拟使用数学模型来复制生物条件,桥接理论和实践,通过验证假设早期并优化遗传增益和资源使用。虽然策略可以提高特质价值,但它们会降低遗传多样性,从而结合方法。研究强调了将策略与性状遗传力和选择时间保持一致的重要性,并保持遗传多样性,同时考虑基因型 - 环境相互作用,以避免早期选择中的偏见。在精确的标记放置时,使用标记会加速繁殖周期,前景和背景选择是平衡的,并且有效地管理了QTL。基因组选择通过缩短育种周期和改善父级的选择来增加遗传增长,尤其是对于低遗传力性状和复杂的遗传结构而言。定期更新培训集至关重要,无论遗传结构如何。贝叶斯方法在较少的基因和早期的繁殖周期中表现良好,而BLUP对于具有许多QTL的性状更为强大,而RR-Blup在不同条件下证明了灵活性。有明确的目标和足够的种质可用时,较大的人群会带来更大的收益。准确性在几代人中下降,受到遗传结构和人口规模的影响。对于低遗传力性状,多特征分析提高了准确性,尤其是与高遗传力性状相关时。更新包括表现最佳的候选人,但保存可变性可提高提高和准确性。低密度基因分型和插补为高密度基因分型提供具有成本效益的替代方法,从而获得了可比的结果。靶向种群优化遗传关系,进一步提高准确性和繁殖结果。评估基因组选择揭示了短期收益与长期潜力和快速循环基因组计划之间的平衡。多样化的方法保留了稀有等位基因,实现了显着的收益并保持多样性,并突出了在优化繁殖成功方面的权衡。
根结线虫(Meloidogyne spp。,rkn)是全球最具破坏性的内寄生虫线虫之一,通常导致作物生长和产量的降低。洞悉宿主-RKN相互作用的动力学,尤其是在不同的生物和非生物环境中,对于设计新型的RKN缓解措施可能是关键的。植物促进生长细菌(PGPB)涉及不同的植物生长增强活动,例如生物铜质化,病原体抑制和全身耐药性的诱导。我们总结了有关PGPB和非生物因素(例如土壤pH,质地,结构,水分等)作用的最新知识。在调节RKN-host相互作用中。rkn直接或间接地受到不同PGPB的影响,相互作用中的非生物因子相互作用以及对RKN感染的宿主反应。我们强调了(i)PGPB直接和间接影响RKN-宿主相互作用的三方(host-rkn-pgpb)现象; (ii)宿主对根际PGPB的选择和富集的影响; (iii)土壤微生物如何增强RKN寄生虫; (iv)宿主在RKN-PGPB相互作用中的影响,以及(v)非生物因子在调节三方相互作用中的作用。此外,我们讨论了不同的农业实践如何改变相互作用。最后,我们强调将三方互动知识纳入集成的RKN管理策略的重要性。
硅(Si)越来越被公认为是一种有益的因素,可显着提高作物的生长和生产力,尤其是面对各种非生物和生物胁迫。其在应激条件下保护植物方面的作用以及改善植物的整体适应性,引起了研究人员和农艺学家的极大关注。值得注意的是,最近的研究表明,即使没有压力,SI也可以提供好处,这表明其以可持续的方式增强植物营养和生产力的潜力(Prado,2023; Verma等,2023)。通过缓解压力的不利影响和促进增长,SI有助于可持续的农业实践,与对环保农业解决方案的需求保持一致(Prado等,2024)。农作物中各个地区的营养疾病在全球各个地区都普遍存在,并且SI已被证明可以增强对降低的耐受性(Alves等,2024; Teixeira等人。; Silva等,2021; Teixeira等人,2021)以及毒性(Alves等,2023; SousaJúnior等,2022; Barreto等,2022)。这种双重能力使SI成为改善植物健康和农业弹性的关键组成部分。随着气候变化的影响加剧,干旱,盐度和冷应激等因素构成了对植物活力的显着威胁。这些压力源是由于农业实践不足和肥料成本上升而加剧了迫切需要采用提高作物生产力的策略,同时又将这种挑战降至最低,尤其是在农作物中(Verma等,2024年)。在过去的二十年中,科学界关于SI在土壤和植物系统中的作用的兴趣显着提高。迄今为止的研究发现很有希望,表明SI可以在不断变化的气候下有效缓解各种压力,并增强农业弹性,在我们对土壤植物相互作用所涉及的机制的理解方面取得了显着的进步。在这个专门的研究主题中,我们策划了一系列研究,这些研究深入研究了SI在增强土壤植物动力学中的多方面作用。一个重要的贡献是Teixeira等人的作品。,重点是SI在能量甘蔗中的作用。鉴于其可再生能源生产的潜力,能量甘蔗对于可持续农业实践至关重要。然而,该研究强调了碱性土壤中的铁缺乏症所带来的挑战。作者证明了SI增强了铁的吸收,从而提高了营养效率和光合作用,最终导致增加
现在比以往任何时候都更明显地对气候弹性的需求更为明显,气候变化的阴影对我们的未来产生了巨大的不确定性。这种紧迫性在农业中显着相交,在农业中,实现粮食安全的双重目标以扩大全球人口和采用可持续生产实践至关重要。可持续农业的核心是对营养物质的有效利用,尤其是氮,鉴于其对农作物生产力和环境福祉的深远影响。由于气候变化,天气不足,温度升高以及影响农作物吸收的养分吸收和肥料的有效性,养分管理的复杂性被气候变化所增强。因此,优化养分管理超越了提高产量;这是关于强化农业反对气候诱发的逆境。在农业方面的最新技术进步已经在提高养分效率方面的归零,这标志着在升级气候和环境挑战的研究中,研究中的关键时刻。研究现在必须集中于在不断发展的天气条件下不同作物的精确需求,同时优先考虑土壤和节水,并降低温室气体的排放。从经济上讲,使这些创新负担得起和可扩展的农民至关重要。但是,此类创新的可伸缩性,成本和农民的可及性,尤其是在不太发达地区的,需要仔细考虑。将这些技术适应各种农作物和气候提出了其他挑战。这篇社论封装了最近发现对营养效率和气候弹性的本质和含义,主张未来,高级技术符合可持续的农业以以环保的方式确保食品。Bhavya等人的文章。对CO 2水平升高如何影响水稻种植有细微的理解,特别关注产量,质量和营养含量。在增加的CO 2条件下,耕种者的数量有所增加,但
