能够产生新型输出的抽象开发系统是当前人工智能(AI)研究的主导趋势之一。近年来,这种生成系统的功能和可用性,尤其是所谓的大型语言模型(LLM)。尽管神经符号生成模型比纯粹的统计生成模型具有优势,但目前很难比较培训,微调和使用这种方法不断增长的方法的不同方式。在这项工作中,我们为此目的使用了van Bekkum等人的模块化设计模式和拳头语言,并扩展了这些模型,以实现生成模型,特别是LLM的表示。这些模式提供了一种通用语言来描述,比较和理解所使用的不同架构和方法。我们的主要目的是支持对生成模型的更好理解,并支持基于LLM的系统的工程。为了证明这种方法的有用性,我们探索了生成的神经符号结构和方法,作为这些生成设计模式的用例。
摘要:本文分享了核工业中使用的机器人系统的知识,并建议在高级小型模块化反应堆开发中使用机器人和自动化系统。在先进技术的时代已经看到,自动化和机器人系统的使用变得过于频繁,每天都在增加。有很多仍在开发阶段的领域。核工业是通过自动机器人系统构建高级反应堆的发展场所之一。已经观察到,核工业仍需要在制造,检查,操作和维护等开发项目中利用自动解决方案。开发自动机器人系统可以帮助制造,检查,操作和维护下一代核反应堆,特别是小型模块化和微核反应堆。机器人系统可以实现小型模块化反应堆(SMR)或微反应器(MR)开发的固有安全性,可靠性,效率和准确性等益处。这项研究可以扩展到使用机器人技术和自动化系统,从核燃料制造设施到核废料处置应用。这项研究可用于设计和实施智能自动核反应堆机器人和自动化系统。关键字:机器人,自动化,高级核反应堆,小型模块反应堆(SMR)和微反应器(MR)1。引言核电站是各种类型和世代的。在第三代核反应堆中进行了最新的发展。A.使用机器人技术,所有生产阶段都可以自动化。随着减少碳足迹的需求不断增长,多个组织正在接近基于4代的小型模块化和微反应堆的开发。常规核电站制造工艺是劳动密集型和耗时的任务。复杂控制系统,反应器容器,蒸汽发生器和能量发生器的制造,工具,检查和组装的过程[1]。机器人技术和自动化的应用旨在以安全性,精度,效率和一致性执行重复的任务。将这项技术纳入制造核电站将大大改善原子能行业。随着对安全,清洁,一致和成本效果解决方案的高基础功率需求的增加,只有小型模块化和微反应器制造可以使用机器人技术和自动化来促进和增强高生产,质量和安全标准。在跨国电力地形中引入机器人技术和自动化技术及其可能性可以彻底改变核电厂的制造过程[2]。机器人核电站制造业的生产线各个阶段。为行业制造的机器人配备了传感器,工具和执行器来执行
Abbreviation Description BOO Build-Own-Operate CfD Contract for Difference CFPP Carbon Free Power Project CFR Code of Federal Regulations COL Construction and Operation License COP Conference of Parties CSF Cost Stabilization Facility DOE Department of Energy ECA Export Credit Agency EPC Engineering, Procurement, and Construction EXIM Export-Import Bank (United States) FIRST Foundational Infrastructure for Responsible Use of Small Modular Reactor Technology FOAK First-of-a-Kind HALEU High-Assay Low Enriched Uranium HTGR High Temperature Gas Reactor HWR Heavy Water Reactor IAEA International Atomic Energy Agency IBNI International Bank for Nuclear Infrastructure IEF International Energy Forum IRA Inflation Reduction Act LACE Levelized Avoided Cost of Energy LCOE Levelized Cost of Electricity LEU Low Enriched Uranium LFSCOE Levelized Full System Cost of Electricity LILW Low and Intermediate Level Waste LLW Low-Level Waste LLC Limited Liability Company LPO Loans Program Office LWR Light Water Reactor MDB Multilateral Development Bank MOX Mixed-oxide fuel MWe Megawatt of electricity MWh Megawatt hour NOAK Nth-of-a-Kind NPP Nuclear Power Plant NPT Nuclear Non-Proliferation Treaty NRC Nuclear Regulatory Commission (United States) OCC Overnight Capital Cost O&M Operation and Maintenance PRA Probabilistic Risk评估Purex铀提取
1 荷兰乌得勒支大学医学中心 CDL 研究,乌得勒支大学,乌得勒支。2 荷兰乌得勒支大学乌得勒支药学研究所药剂学系。3 瑞典斯德哥尔摩卡罗琳斯卡医学院生物分子与细胞医学部实验室医学系。4 瑞典斯德哥尔摩卡罗琳斯卡大学医院胡丁厄细胞疗法和同种异体干细胞移植系 (CAST) 5 瑞典胡丁厄卡罗琳斯卡 ATMP 中心,ANA Futura 6 牛津大学儿科系,牛津,英国。7 英国牛津发育与再生医学研究所 (IDRM)。8 荷兰乌得勒支大学医学中心威廉敏娜儿童医院儿科呼吸医学系。 9 乌得勒支再生医学,乌得勒支大学医学中心,乌得勒支,荷兰。 * 通讯作者:ogdejong@uu.nl
德国波恩大学医学院的精神病学和心理治疗系; B德国奥尔登堡大学医学与健康科学学院精神病学系; C以色列海法海法大学心理学系; D鲁尔大学伯丘姆(Bochum)的心理学学院,德国博丘姆(Bochum); E德国心理健康中心(DZPG),德国Bochum; F德国弗雷堡大学医学院医学中心医学中心精神病学和心理治疗系;德国波恩的波恩大学经济学和神经科学中心; h德国波恩大学医学院实验性癫痫学和认知研究所;我的医学心理学部门,精神病学和心理治疗系,德国波恩大学医学学院; J Ruhr University Bochum,Bochum,德国Bochum的医学学院社会神经科学系; K研究中心的一名健康鲁尔大学联盟鲁尔,鲁尔大学,德国博丘姆大学
我们提出了一种新颖的观点,以将控制理论结果与强化学习(RL)的控制稳定性,鲁棒性和政策转移:为模构架设计部署收缩理论。我们利用收缩理论的模块化来设计坐标转换,该转换可以简化非线性约束,以使稳定性变成可溶解的稳定性,从而在控制网络的输入梯度上产生线性约束。这些约束可以在控制体系结构中实现,因此学习框架保持不变,这是保证控制稳定性的最低侵入性方法。我们还得出相应的理论来表征鲁棒性。为了减轻动态模型的限制和要求,我们提出了一个模块化控制体系结构,包括坐标转换,复合变量和任务空间控制器,可以说很容易与未知环境中的机器人操作进行层次RL集成,并改善其性能。我们在两个模拟的操作场景中演示了我们的结果。这项工作提出了制定建筑设计问题来创建与收缩指标配对的Riemannian空间的潜力。关键字:模块化,收缩理论,增强学习,控制稳定性
石墨烯场效应晶体管(GFET)由于其在生物分子信号扩增中的出色特性而被广泛用于生物传感,在临床诊断中具有高度敏感性和高温和护理测试的潜力。然而,复杂的制造步骤中的困难是GFET的进一步研究和应用的主要局限性。在这项研究中,引入了一种模块化制造技术,以在3个独立的步骤内构建微流体GFET生物传感器。纳入了低熔化的金属电极和复杂的流道,以维持石墨烯的结构完整性并促进后续的感应操作。实用的GFET生物传感器具有出色的长期稳定性,并且在各种离子环境中有效地表现。它还表现出高灵敏度和选择性,可在10 FM浓度下检测单链核酸。此外,当与CRISPR/CAS12A系统结合使用时,它促进了以1 FM浓度的核酸无扩增和快速检测。因此,据信这种模块化的微流体GFET可能会揭示在各种应用中基于FET的生物传感器的进一步发展。
•反对马林战(ASW)(拖曳的身体传感器,自动驾驶汽车和ASW鱼雷管)•卸货索雷诱饵•矿山柜台(MCM)(MCM)(自动驾驶汽车和对潜水手术的支持,对固定空气供应的潜水操作) Warfare (ASuW) (advanced missile systems such as the RBS15 from SAAB to be accommodated in our containers/modules) • Humanitarian Assistance and Disaster Relief (HADR) (advanced medical facilities, reverse osmosis water treatment plant and electrical generation plant can be accommodated in our modules) • Special Forces (SF) support (SF mission planning and Command and Control capability can be securely accommodated in our modules) • Maritime Interdiction Operations (MIO) and Resource and Border Protection Operations (RBPO) (the Cube system can provide stowage and launch and recovery systems for additional boats in addition to modular accommodation for boarding parties and other government agency staff) • Sea Mine Laying module that consists of a container-based minelaying module and one or more storage modules • Research Support modules for for inspection, surveillance and repair of subsea installations • Launch and Recovery module for ROV´s,无人机(UAV),USV,AUV,UUV和MINI-SUBS
未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本的版权持有人(此版本发布于2024年5月10日。; https://doi.org/10.1101/2024.05.09.593242 doi:biorxiv Preprint
Sebastian Arangundy Franklin、Friedrich Fauser、Luis Rodriguez、Nicola J Schmidt、Nicholas A Scarlott、Adeline Chen、Rakshaa Mureli、Bhakti N Kadam、Jessica E Davis、Lifeng Liu、Danny F Xia、Mohammad Qasim、Taleoh J Bryange Vaidyak、Lam、Andrew Nguyen、David Paschon、Gregory Davis 和 Jeffrey C Miller