本文提出了一个基于代理的模型 (ABM),用于描述技术范式和新部门的内生性出现,其中包括不同的劳动力创造和破坏模式以及消费动态。该模型以劳动力增强型 K+S ABM 为基础,研究了从不同形式的技术变革中产生的长期劳动力需求模式。它提供了一个多层次、综合的视角来审视所谓的未来工作情景,而这些情景目前通常局限于公司层面或短期部门分析,并研究了劳动力创造和破坏趋于平衡的条件。这是一种相对公平和稳定的收入分配,由福特式的劳动力市场监管制度保证,保证了该模型永远不会达到完全技术失业的阶段。技术变革与总需求之间的协调模式也由不断增加的产品复杂性来确保,产品复杂性不断增加,从而不断吸收劳动力。
Qi Huang 1 Yangrui Chen 1 Zhi Zhang 1 Yanghua Peng 1 Xiang Li 1 Cong Xie 1 Shibiao Nong 1 Yulu Jia 1 Sun He 1 Hongmin Chen 1 Zhihao Bai 1 Qi Hou 1 Shipeng Yan 1 Ding Zhou 1 Yiyao Sheng 1 Zhuo Jiang 1 Haohan Xu 1 Haoran Wei 1 Zhang Zhang 1 Pengfei Nie 1 Leqi Zou 1 Sida Zhao 1 Liang Xiang 1 Zherui Liu 1 Zhe Li 1 Xiaoying Jia 1 Jianxi Ye 1 Xin Jin 2 , Xin Liu 1
考虑由成对测量组成的数据,例如对象对之间是否存在链接。例如,这些数据出现在蛋白质相互作用和基因调控网络、作者-收件人电子邮件集合和社交网络的分析中。使用概率模型分析成对测量需要特殊的假设,因为通常的独立性或可交换性假设不再成立。在这里,我们引入了一类用于成对测量的方差分配模型:混合成员随机块模型。这些模型结合了实例化密集连接块(块模型)的全局参数和实例化连接中节点特定变异性的局部参数(混合成员)。我们开发了一种用于快速近似后验推理的通用变分推理算法。我们展示了混合成员随机块模型的优势,并将其应用于社交网络和蛋白质相互作用网络。关键词:分层贝叶斯、潜在变量、均值场近似、统计网络分析、社交网络、蛋白质相互作用网络
纤维板层癌 (FLC) 是一种罕见但致命的癌症,主要发生在年轻人中。目前尚无已知的有效治疗方法,尽管似乎有几种有希望的治疗方法正在开发中。遗传学研究证实,几乎所有 FLC 肿瘤都具有由融合基因 (DNAJB1-PRKACA) 编码的融合蛋白标记 (DNAJB1- PRKACA);它目前被接受为 FLC 的诊断标准。几个研究小组已经建立了患者来源的异种移植 (PDX) FLC 模型,使用免疫功能低下的动物作为宿主,并使用患者组织样本(肿瘤或腹水)作为 PDX 衍生类器官的主要来源。这些 FLC 类器官由 FLC 上皮、内皮祖细胞和星状细胞组成。CRISPR/Cas9 被用作基因编辑技术来修改成熟肝细胞以获得表达融合基因和/或与 FLC 相关的其他突变基因的离体 FLC 样细胞。尽管这些模型模拟了部分但不是全部 FLC 特征,但使用这些模型进行药物筛选在确定临床上有用的治疗方法方面已被证明无效。将 FLC 与正常成熟的内胚层细胞谱系进行比较的遗传研究表明,FLC 并非与肝细胞共享遗传特征,而是与胆管树干细胞 (BTSC) 亚群共享遗传特征,这些肝/胰腺干细胞/祖细胞始终存在于胆管树中的胆管周围腺体 (PBG) 中,是肝脏和胰腺形成和出生后再生的干细胞来源。因此,预计 BTSC 模型(而不是肝细胞模型)可能更有用。在这篇综述中,我们总结了各种 FLC 模型的现状及其特点、应用和局限性。它们提供了了解这种致命疾病的原因和特征的机会,并且可以从中确定有效的治疗方法。
大型语言模型(LLMS)是非常大的深度学习模型,可根据大量数据进行重新训练。是句子的双向编码器表示,来自变形金刚(SBERT)的句子是基于变压器的DeNoising AutoCoder(TSDAE),生成查询网络(GENQ)和生成假伪标记(GPL)的改编。本论文项目旨在为瑞典法律判断开发语义搜索工具,以克服法律文件检索中传统关键字搜索的局限性。为此,使用高级培训方法(例如TSDAE,GENQ和GPL的改编),通过利用自然语言处理(NLP)(NLP)(NLP)(NLP)和精细的LLM来开发一种善于理解法律语言的语义细微差别的模型。要从未标记的数据中生成标记的数据,对其进行微调后使用了GPT3.5模型。使用生成模型的使用标记数据的生成对于该项目有效训练Sbert至关重要。已经评估了搜索工具。评估表明,搜索工具可以根据语义查询准确检索相关文档,并同样提高法律研究的效率和准确性。genq已被证明是此用例的最有效的训练方法。
用于量子动力学模拟的量子算法传统上基于实现时间演化算子的 Trotter 近似。这种方法通常依赖于深度电路,因此受到可用噪声和近期量子硬件的重大限制的阻碍。另一方面,变分量子算法 (VQA) 已成为不可或缺的替代方案,可在当今硬件上进行小规模模拟。然而,尽管最近为量子动力学开发了 VQA,但尚未对其效率和可扩展性进行详细评估。为了填补这一空白,我们应用了基于 McLachlan 原理的 VQA 来模拟自旋玻色子模型在不同水平的实际硬件噪声以及不同物理状态下的动力学,并讨论了算法的准确性和随系统大小而变化的缩放行为。我们观察到变分方法与一般的、物理驱动的波函数假设相结合使用时具有良好的性能,并将其与传统的一阶 Trotter 演化进行了比较。最后,基于此,我们对经典难处理系统的模拟进行了扩展预测。我们表明,尽管变分法明显降低了量子门成本,但其当前实现不太可能为时间相关问题的解决带来量子优势。
要查看此改进的明确证据,我们要求PG&E提供一份清单,以显示其新模型如何改变其缓解措施的地理目标。尽管他们无法提供此信息,但PG&E描述了使用该模型的内部过程。长期计划过程依赖于主题专家(SME)来制定降低风险措施,并且在共享和讨论模型结果的风险建模团队与中小型企业之间进行了多次会议和讨论。但是,PG&E没有保留任何正式的前后记录,无法清楚地证明对建议或建造的模型影响。使用中小企业制定缓解措施与公用事业行业的标准实践一致,用于制定分配风险措施。
生成模型的最新进展引起了人们对统计差异作为模型比较手段的研究兴趣。常用的评估方法,例如 Fréchet 初始距离 (FID),与样本的感知质量有很好的相关性,并且对模式下降很敏感。然而,这些指标无法区分不同的失败案例,因为它们只产生一维分数。我们提出了一种新的分布精度和召回率定义,将差异分解为两个独立的维度。所提出的概念直观,保留了理想的属性,并自然而然地产生了一种可用于评估生成模型的有效算法。我们将这个概念与总变异以及最近的评估指标(如初始分数和 FID)联系起来。为了证明所提出方法的实用性,我们对生成对抗网络和变分自动编码器的几种变体进行了实证研究。在大量实验中,我们表明所提出的指标能够将生成样本的质量与目标分布的覆盖范围区分开来。
摘要:二维(2D)材料中的本地带隙调整对于电子和光电设备而言至关重要,但是在纳米级实现可控制和可重复的应变工程技术仍然是一个挑战。在这里,我们通过扫描探针报告了热机械纳米引导,以在2D过渡金属二核苷剂和石墨烯中创建应变纳米图案,从而在空间分辨率下以调制的带隙启用任意模式,以降低到20 nm。2D材料通过范德华的相互作用与下面的薄聚合物层相互作用,由于加热探针的热和压痕力而变形。特别是,我们证明了钼二硫化(MOS 2)的局部带隙被空间调节高达10%,并且可以约180 MeV的幅度调整为180 MEV,以菌株的线性速率约为-70 meV。该技术提供了一种多功能工具,用于研究具有纳米尺度分辨率的2D材料的局部应变工程。关键字:2D材料,应变纳米图案,钼二硫化,局部带隙,热扫描探针光刻,尖端增强的拉曼光谱■简介
