光锥体现了物理学中最基本的原理之一:因果关系。在构建描述自然界基本相互作用的模型时,基本要求之一是光锥的存在。事实上,人们已经认识到它们的出现是量子场的相对论不变性的结果 (1)。有趣的是,有几个系统的有效动力学是相对论不变的,有效光锥也发挥了作用。最近的实验表明,有效光锥确实会出现在冷原子气体中 (2, 3)。为了直接观察这些光锥,必须克服几个实验挑战,包括在精细长度尺度上解析系统并测量能够揭示它们的相关可观测量。解决这些问题是设计量子模拟器的更大研究工作的一部分 (4-7)。例如,操纵一维隧道耦合气体可以模拟具有基础重要性的原型场论(8–11),但也可以捕获纳米线中的电荷传输(12)。在这里,我们的目标是使用这个量子模拟器通过实验探索其在非均匀或弯曲度量中模拟动力学的潜力。类似的目标一直是模拟重力系统(13,14)的重点,该系统最近在使用冷原子系统模拟黑洞(15,16)或宇宙学(17–19)过程方面非常成功。在这项工作中,我们研究了非均匀一维量子气体中的关联传播。我们表明,关联前沿遵循模拟声学度量的测地线,并发现传播速度的空间依赖性与理论建模一致。我们观察相关前沿的弹道传播,并讨论这些相关前沿的详细形状、系统边界的反射和周期性复发。
《核电站教育和培训模拟器的分类、选择和使用》(IAEA-TECDOC-1887)为教育机构、培训中心和供应商提供有关如何正确分类、选择和使用各种核电站模拟器的信息。国际原子能机构还提供了使用核反应堆模拟计算机程序进行实践学习的机会,这些程序包括全厂基本原理模拟器或部分任务模拟器,用于处理工厂运行的特定部分(即系统或组件)或特定现象。基本原理模拟器的简化反应堆设计使专业人员能够掌握基本概念,而不会被更复杂的全范围模拟器的细节所淹没。这些基本原理全厂或部分任务模拟器的目标是深入了解和实际理解反应堆的运行特性以及工厂对扰动和事故场景的响应。成员国可根据要求使用这两种基本原理模拟器,因此它们是有关核电站设计、安全、技术、模拟和运行等广泛主题的教学和培训的宝贵资源。
摘要:随着垂直起降无人机(VTOL UAV)的日益普及,一个新的问题出现了:飞行员训练。大多数传统的飞行员训练模拟器都是为全尺寸飞机设计的,而大多数无人机模拟器仅专注于概念测试和设计验证。X-Plane飞行模拟器进行了扩展,包括复杂的风动力学、地面效应和准确的实时天气等新功能。商用HIL飞行控制器与VTOL垂直起降飞机无人机模型相结合,以提供逼真的飞行控制。在模拟中测试了一个真实的飞行案例场景,以显示包含精确的风模型的重要性。结果是一个完整的模拟环境,已成功部署用于FuVeX制造的Marvin飞机的飞行员训练。
摘要:随着垂直起降无人机 (VTOL UAV) 的日益普及,出现了一个新问题:飞行员培训。大多数传统的飞行员训练模拟器都是为全尺寸飞机设计的,而大多数无人机模拟器仅专注于概念测试和设计验证。X-Plane 飞行模拟器进行了扩展,包括复杂的风动力学、地面效应和准确的实时天气等新功能。商用 HIL 飞行控制器与 VTOL 垂直起降飞机无人机模型相结合,以提供逼真的飞行控制。在模拟中测试了一个真实的飞行案例场景,以显示包含精确的风模型的重要性。结果是一个完整的模拟环境,已成功部署用于 FuVeX 制造的 Marvin 飞机的飞行员训练。
电池电池模拟器有16个通道。通过软件接口,用户可以单独设置每个通道的电压和当前限制,并控制设置,例如输出电压的上升和下降,以及在频道之间的同步启动。其低输出噪声功能使其能够在动态负载变化期间保持电池单元的直流特性,而无需任何涟漪,从而确保稳定的直流输出及时。此外,此功能降低了由负载变化引起的潮流电压,否则可能会损害正在测试的单位(UUT)。这使其成为需要可靠DC电压源的非静态产品和测试应用程序的理想解决方案。
由于驾驶舱中航空电子设备的复杂性和数量不断增加[1],吸收量不断增加。随着这些系统变得越来越复杂,飞行员的精神和身体工作量也将超出现实限制。因此,具有人工智能特性的专家系统旨在协助飞行员进行关键的决策过程。最近,许多基于人工智能的应用程序被设计用于军用战斗机,包括武器运载、智能对抗或威胁规避。当今军用飞机上的战术显示器不仅用于显示态势感知,而且还与许多系统协同工作,例如导航支持系统(NSS)、威胁规避(TA)、电光红外(EO / IR)或武器运载系统(WDS)。这种战术显示系统不仅旨在协助飞行员进行决策过程,而且还能智能地执行任务。该系统通过 EO/IR 摄像头观察世界,使用其内部数据库了解和分类威胁,通过考虑环境约束(例如天气、地形等)计算出最佳路线,以应对威胁并使用机载最合适的可用武器摧毁目标。为了有效地执行此任务,系统必须包含一个中央处理器来收集、融合和
*任何未包含在此表格中的设备申请必须在培训日期前 90 天提出。完整的培训支持系统 (TSS) – 企业培训辅助工具、设备、模拟器和模拟 (TADSS) 索引和目录位于 TSC。询问 TSC 工作人员了解详情。
有限的保修和责任 - 本文档中的信息被认为是准确可靠的。但是,NXP半导体对此类信息的准确性或完整性表示任何表示或暗示的保证,并且对使用此类信息的使用后果不承担任何责任。NXP半导体对本文档中的内容不承担任何责任。在任何情况下,NXP半导体都不应对任何间接,偶然,惩罚性,特殊或结果损害赔偿(包括 - 不受限制 - 利润损失,储蓄损失,业务中断,与任何产品或替换费用相关的成本,任何产品或返回费用有关)是否基于侵权(包括侵权)(包括negligence),违反合同,或其他任何违法行为,或其他任何违法行为。尽管出于任何原因客户可能造成的任何损害,但NXP半导体对此处所述产品的总和和累积责任应受到NXP半导体商业销售的条款和条件的限制。
电流0至20 A编程精度±在23°C±5°C下12个月。电压0.025% + 1.5 mV电流0.035% + 1.5 mA回顾精度±输出 +偏移的百分比在23°C±5°C下12个月。电压0.025% + 1.5 mV
要模拟电池特性,首先将电池模型加载到BV9211B高级电池测试和仿真软件中。该软件算法将实时遵循电池模型并模仿电池行为。该软件支持两种类型的电池模型 - CSV文件中具有VOC,SOC和RI参数的软件或外部电池模型生成的配置文件。为简单起见,您只需要输入四个参数即可模拟电池 - 容量评级,当前限制,初始SOC和切断条件。在模拟电池时,软件同时测量电压和电流,并保存测量结果。该软件允许您立即更改电池的充电。此外,您可以加载在不同温度下创建的多个电池模型。