牲畜和植物育种对可持续农业至关重要(Scho and Simianer 2015),并且更适合于特定环境或市场需求(Qaim 2020)。最近,基因组数据和先进统计方法的可用性彻底改变了育种计划(Kim等人2020)。值得注意的是,基因组选择使育种者可以根据基因构成来预测个体的表现,避免昂贵的表型(Meuwissen等人。2001,Crossa等。 2017)。 这些新的方法解锁了繁殖方案的各种设计可能性,因此很难优化它们。 此外,一个单个繁殖周期可能需要多年,在此过程中涉及许多设计选择。 因此,对使用模拟优化育种计划的兴趣越来越大。 在R中实现了现有的模拟十字架工具(Broman等人 2003,Mohammadi等。 2015,Gaynor等。 2020,Pook等。 2020)或朱莉娅(Chen等人 2022)。 尽管它们提供了广泛的功能,但它们无法利用高性能计算机中的并行性,这些计算机可能是针对大型且复杂的繁殖方案的必要性。 例如,模拟十个有十个春季的人的全脚架十字架会导致450个后代,而20个人的类似拨盘会产生1900个后代。 随着这种快速扩展,模拟与成千上万个人的育种计划中的完整拨号线可能是不可行的;因此,需要开发可以加快模拟的工具。2001,Crossa等。2017)。这些新的方法解锁了繁殖方案的各种设计可能性,因此很难优化它们。此外,一个单个繁殖周期可能需要多年,在此过程中涉及许多设计选择。因此,对使用模拟优化育种计划的兴趣越来越大。在R中实现了现有的模拟十字架工具(Broman等人2003,Mohammadi等。 2015,Gaynor等。 2020,Pook等。 2020)或朱莉娅(Chen等人 2022)。 尽管它们提供了广泛的功能,但它们无法利用高性能计算机中的并行性,这些计算机可能是针对大型且复杂的繁殖方案的必要性。 例如,模拟十个有十个春季的人的全脚架十字架会导致450个后代,而20个人的类似拨盘会产生1900个后代。 随着这种快速扩展,模拟与成千上万个人的育种计划中的完整拨号线可能是不可行的;因此,需要开发可以加快模拟的工具。2003,Mohammadi等。2015,Gaynor等。 2020,Pook等。 2020)或朱莉娅(Chen等人 2022)。 尽管它们提供了广泛的功能,但它们无法利用高性能计算机中的并行性,这些计算机可能是针对大型且复杂的繁殖方案的必要性。 例如,模拟十个有十个春季的人的全脚架十字架会导致450个后代,而20个人的类似拨盘会产生1900个后代。 随着这种快速扩展,模拟与成千上万个人的育种计划中的完整拨号线可能是不可行的;因此,需要开发可以加快模拟的工具。2015,Gaynor等。2020,Pook等。2020)或朱莉娅(Chen等人2022)。尽管它们提供了广泛的功能,但它们无法利用高性能计算机中的并行性,这些计算机可能是针对大型且复杂的繁殖方案的必要性。例如,模拟十个有十个春季的人的全脚架十字架会导致450个后代,而20个人的类似拨盘会产生1900个后代。随着这种快速扩展,模拟与成千上万个人的育种计划中的完整拨号线可能是不可行的;因此,需要开发可以加快模拟的工具。为此目的最有吸引力的语言是Python。Python是数值计算和数据科学最常用的编程语言之一,许多库可用于优化和机器学习(Pedregosa等人。2011,Bradbury等。2011,Bradbury等。
主要关键词