对于量子计算机来说,首先量化的、基于网格的化学建模方法是一种自然而优雅的选择。然而,使用今天的量子原型来探索这种方法的威力是不可行的,因为它需要大量近乎完美的量子比特。在这里,我们使用精确模拟的量子计算机,最多有 36 个量子比特,来执行深度但资源节约的算法,用单个和成对的粒子来建模二维和三维原子。我们探索了一系列任务,从基态准备和能量估计到散射和电离动力学;我们评估了分裂算子量子场论 (SO-QFT) 哈密顿模拟范式中的各种方法,包括先前在理论论文中描述的协议和我们自己的技术。虽然我们发现了某些限制和注意事项,但一般来说,基于网格的方法表现得非常好;我们的结果与以下观点一致:从早期容错量子计算时代开始,第一量化范式将占据主导地位。
药物相互作用 (DDI) 是药物相关不良反应的常见原因,可能对患者安全造成重大风险。虽然小分子药物 DDI 评估的最佳实践已经确立,但近年来,监管部门对治疗性蛋白质 DDI 风险评估的看法一直在演变。TP(治疗性蛋白质)药物计划的开发计划需要根据具体情况、基于风险的方式设计临床药理学包的 DDI 部分,因为疾病状态和靶标生物学等因素通常是 TP DDI 的关键介质(图 1)。虽然 TP 的临床药理学包的 DDI 部分可能比小分子的 DDI 部分更精简,但可能需要进行一些临床研究,解决这些非小分子药物的 DDI 问题非常重要。基于模型的药物开发(建模和模拟)使用生物统计模型来为有关 DDI 风险的决策提供信息。
半胱氨酸靶向具有许多优势,因为半胱氨酸具有高度亲核性,有许多兼容的亲电试剂,并且 Cys → Ser 突变研究可以确认结合反应特异性。此外,它们可以具有较长的药效学持续时间、增强的选择性并能够实现特定的占用生物标志物方法 (1, 2)。然而,不利的一面是,高亲核性会阻碍微环境敏感探针的开发,大多数蛋白质结合位点不含有 Cys,而 Cys → Ser 突变会导致耐药性(例如 BTK、EGFR)。因此,需要开发与半胱氨酸以外的残基反应的替代亲电弹头。磺酰氟 (SuFEx) 被偶然发现与蛋白质结合位点中的多种氨基酸残基发生反应(图 1)(3-5)。
本文中表达的任何观点都是作者的意见,而不是Iza的意见。本系列发表的研究可能包括对政策的看法,但IZA没有任何机构政策立场。IZA研究网络致力于研究完整性的IZA指导原则。IZA劳动经济学研究所是一家独立的经济研究所,在劳动经济学领域进行研究,并就劳动力市场问题提供基于证据的政策建议。在德意志邮政基金会的支持下,伊扎(Iza)拥有世界上最大的经济学家网络,其研究旨在为我们这个时代的全球劳动力市场挑战提供答案。我们的主要目标是在学术研究,决策者和社会之间建造桥梁。IZA讨论论文通常代表初步工作,并被散发以鼓励讨论。引用这种论文应解释其临时特征。可以直接从作者那里获得修订版。
LS-DYNA 包含 12 多种材料模型,可用于描述混凝土结构行为 [1]。本研究使用 *MAT_CSCM(_CONCRETE)/*(MAT_159) 混凝土模型 [2]–[4]。该模型基于三个不变屈服面,可以分别跟踪拉伸和压缩损伤,根据应变率效应调整混凝土强度和断裂能。由于“易于输入”的程序,所有输入参数都可以按照 CEB-FIP 模型代码 [5] 重新生成。该程序根据用户输入的正常混凝土强度 𝑓𝑓 𝑐𝑐 ∈[20; 58] MPa 参数提供初始化例程,重点是中间范围 𝑓𝑓 𝑐𝑐 ∈ [28; 48] MPa[2]。单元素试验 对一个有限元的单轴无侧限拉伸和压缩的几项试验表明,声明的初始化程序给出的材料参数存在很大的不准确性。所得结果也得到了许多论文 [6]、[7] 的证实。因此,基于模型初始数据 [2] 和第三方研究 [6] 开发了新的外部初始化程序。该程序根据用户输入的抗压强度和骨料尺寸数据生成所有输入参数。单元素试验的结果如图所示。1 和 2。
LS-DYNA 包含 12 多种材料模型,可用于描述混凝土结构行为 [1]。本研究使用 *MAT_CSCM(_CONCRETE)/*(MAT_159) 混凝土模型 [2]–[4]。该模型基于三个不变屈服面,可以分别跟踪拉伸和压缩损伤,根据应变率效应调整混凝土强度和断裂能。由于“易输入”程序,所有输入参数均可按照 CEB-FIP 模型代码 [5] 重新生成。该程序提供基于用户输入参数的初始化例程,这些参数为正常混凝土强度 ∈ [20; 58] MPa,重点是中间范围 ∈ [28; 48] MPa[2]。单元素试验 对一个有限元的单轴无侧限拉伸和压缩的几项试验表明,声明的初始化程序给出的材料参数存在很大的不准确性。所得结果也得到了许多论文 [6]、[7] 的证实。因此,基于模型初始数据 [2] 和第三方研究 [6] 开发了新的外部初始化程序。该程序根据用户输入的抗压强度和骨料尺寸数据生成所有输入参数。单元素试验的结果如图所示。1 和 2。
PyRx-virtual 筛选工具用于与协议对接:(i)检查 SARS-CoV-2 Mpro 蛋白质结构(PDB 6Y2E)中缺失的原子、键和接触,去除水分子并使用以下参数进行能量最小化,力场:Amber ff14SB,最陡下降步长:100,最陡下降步长:0.02 Å,共轭梯度步长:10,共轭梯度步长:0.02 Å,使用 Chimera 版本 1.14 上的分子建模工具包 (MMTK) 包。(4)该最小化结构用作对接分析的受体。(ii)将最小化结构保存为 pdb 文件并导入 PyRx 软件。(iii)配体也以 pdb 格式导入。Autodock Tools 模块用于生成 pdbqt 输入文件。 (iv) 使用 Autodock Vina 算法对选定的配体进行对接。在 Autodock Vina 中,网格框设置为覆盖 Mpro 的活性位点,其尺寸为 Å:中心 (x, y, z) = (-16.46, -26.70, 1.58),尺寸 (x, y, z) = (23.34, 19.09, 10.98)。然后以 8 的详尽度运行对接模拟。使用 Autodock Vina 模块内置评分功能预测的最低结合亲和力分数 (kcal/mol) 评估对接结果。
。CC-BY 4.0 国际许可(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2020 年 3 月 22 日发布。;https://doi.org/10.1101/2020.02.28.970343 doi:bioRxiv 预印本
人们经常要求使用建筑结构部件的耐火性能来预测或估计未经测试的结构的耐火性能。在某些情况下,有用的估计可能基于可用的数据。然而,在大多数情况下,最终结果气候的质量在很大程度上取决于评估人员对问题的经验和感觉。为了帮助更准确地做出此类估计,该局设计并建造了一个电子设备,用于进行必要的计算。对建筑物的各个部分进行了耐火测试,以确定建筑物在火灾影响下的适用性。虽然机械行为可能经常限制该结构在这方面的实用性,但通常情况下,热传输是决定其耐火能力的关键因素。此类测试 [1] 1 中使用的装置要求在炉内封闭结构中应用与标准火灾暴露相对应的时变温度函数。该程序还允许通过辐射和对流从样品未暴露部分发生热损失。这些条件使得使用分析方法解决传热方程变得不切实际。因此,使用一些高速近似方法来计算暴露于火中的结构的热行为似乎是可取的。人们考虑使用数字和传统模拟计算机,并取得了一定程度的成功,近似地解决了这些问题。然而,似乎使用热电路和电路之间的直接类比可能会在解决问题时提供更大的灵活性,并简化“编码”。该设备的构造与 Lawson & McGuire [2] 开发的设备有些相似。这直接利用了电气和热电路之间的类比,而不需要大量组装电子机械操作器或单元