摘要:故障模式、影响和危害性分析 (FMECA) 是一种定性风险分析方法,广泛应用于各种工业和服务应用。尽管该方法广受欢迎,但多年来,文献中分析了该方法的几个缺点。获取故障模式风险水平的传统方法不考虑风险因素之间的任何相对重要性,并且可能不一定代表 FMECA 团队成员的真实风险感知,通常用自然语言表达。本文介绍了 I 型模糊推理系统 (FIS) 的应用,作为改进经典 FMECA 分析中故障模式风险水平计算的替代方案,以及它在网络电网中的应用。我们基于模糊的 FMECA 首先考虑由 FMECA 专家定义的一组模糊变量,以体现与人类语言相关的不确定性。其次,使用“七加或减二”标准来设置每个变量的模糊集数量,形成一个由 125 条模糊规则组成的规则库,以表示专家的风险感知。在电力系统框架中,新的基于模糊的 FMECA 用于网络电网系统的可靠性分析,评估其相对于传统 FMECA 的优势。本文提供了以下三个关键贡献:(1) 使用模糊集表示与 FMECA 专家相关的不确定性,(2) 通过
摘要 —本文介绍了一种基于模糊理论的两个相邻住宅电网连接微电网之间的电力交换管理,该微电网由光伏发电和电池储能系统 (BESS) 组成。所提出的电力交换管理考虑了每个微电网的能量变化率的大小以及两个微电网的 BESS 之间的充电差异,以对能量不足的 ESS 进行充电。因此,所提出的电力交换管理可以通过联合运行而不是单独运行来减少从每个微电网的主电源吸收的电量,并且还可以同步两个微电网的 ESS,从而改善 ESS 的行为。对有和没有电力交换的场景的模拟结果进行了比较,以证明所提出的电力交换管理的充分行为。
摘要简介:肿瘤微环境(TME)的免疫抑制背景是乳腺癌(BC)治疗的重大障碍。针对涉及TME免疫抑制环境的癌症核心信号通路的组合疗法已成为克服TME免疫抑制并增强患者治疗结果的有效策略。这项研究提供了令人信服的证据表明,靶向缺氧诱导型因子-1α(HIF-1α)以及化学疗法和免疫诱导因子以及通过调节TME导致实质性抗癌作用。方法:通过siRNA吸附方法合成壳聚糖(CS)/HIF-1Alpha siRNA纳米复合物。纳米颗粒进行了充分的表征。CS/HIF-1αsiRNA细胞毒性。在BALB/C轴承4T1肿瘤中评估了联合疗法的抗癌作用。qPCR和蛋白质印迹用于评估与TME免疫抑制诱导有关的某些关键基因和蛋白质的表达。结果:HIF-1αsiRNA成功地加载了壳聚糖纳米颗粒。HIF-1αsiRNA纳米复合体显着抑制HIF-1α的表达。三重联合疗法(紫杉醇(PTX) +咪喹莫德(IMQ) + CS/HIF-1αsiRNA)抑制了肿瘤的生长,并下调了癌症进展基因,同时上调了细胞免疫相关的细胞因子。没有CS/HIF-1αsiRNA治疗的小鼠显示癌症抑制作用较少和TME免疫抑制因子。这些结果表明,与其他组合治疗相比,与PTX和IMQ协同抑制癌症进展的抑制作用更明显地抑制癌症的进展。结论:将HIF-1αsiRNA与PTX和IMQ结合在一起是多模式处理的有望。它有可能减轻TME抑制作用,并显着增强免疫系统对抗肿瘤细胞生长的能力,从而在与BC斗争中具有希望的灵感。
我想借此机会承认南艾伯塔省第 7 号条约地区人民的传统领土,其中包括黑脚邦联(由 Siksika、Piikani 和 Kainai 原住民组成)、Tsuut'ina 原住民和 Stoney Nakoda(包括 Chiniki、Bearspaw 和 Goodstoney 原住民)。卡尔加里市也是艾伯塔省梅蒂斯民族(第 3 区)的所在地。
无人战斗机 (UCAV) 研究使这些技术的远程操作技术在现代取得了显著进步,尽管主要侧重于地面打击场景。在空对空作战中,关键决策的毫秒级时间限制阻碍了无人战斗机的远程操作。除此之外,考虑到人类平均视觉反应时间为 0.15 到 0.30 秒,而思考最佳计划并与友军协调的时间则更长,人工智能 (AI) 可以利用巨大的改进空间。虽然许多支持提高自主能力的人预示着设计能够执行极高 g 机动的飞机的能力以及降低飞行员风险的好处,但本白皮书将主要关注实时决策能力的提高。
车辆临时网络(VANET)代表了无线传感器网络(WSN)的改进,其移动感官节点位于车辆内。车辆Adhoc网络在智能城市的应用中处于关键位置,因为车间通信被认为是维持城市技术效率必不可少的。尽管Vanet提供了好处,但它在智能城市应用程序的背景下遇到了许多挑战和缺点。这样的挑战与Vanet的安全和隐私原则有关。隐私和安全性作为与Vanet相关的主要问题,促使多个研究人员在过去十年中提出安全解决方案。目前的研究工作着重于提高服务质量(QoS)的提高数据通信的安全性水平。通过使用区块链技术以及将椭圆曲线加密功能与安全的哈希功能集成以保护从节点到移动控制单元(MCU)的数据通信来实现此安全性增强。此外,提出的研究工作通过采用神经模糊逻辑来识别从源节点到移动控制单元(MCU)的最佳路径,为移动节点和控制单元之间的数据提供了有效的路由机制。将提出的工作与现有的密码方法以及最新的路由路径优化算法,即粒子群优化(PSO),遗传算法(GA),模因算法(MA)(MA)和Honey Bee优化(HBO),以及在计算时间内交付,以确定其优势,即通过PARTIT和分组,并在计算时间内建立优势。
在本文中,使用滑动窗口机理的混合方法,然后是模糊C,意味着针对自动化的脑肿瘤提取提出了聚类。所提出的方法包括三个阶段。第一阶段用于通过实施预处理技术,然后进行纹理特征提取和分类来检测肿瘤脑MR扫描。此外,此阶段还比较了不同分类器的性能。第二阶段由使用滑动窗口机理的肿瘤区域进行定位,其中大小的窗户扫描整个肿瘤MR扫描,窗户被归类为肿瘤或无肿瘤。第三阶段由模糊C组成,是指通过去除从阶段2获得的错误分类窗口来获得肿瘤的确切位置。2D单光谱解剖学特性MRI扫描被考虑进行实验。结果在灵敏度,特异性,准确性,骰子相似性系数方面表现出显着的结果。
在本文中,解决了一个具有两个控制器级别的实用自适应巡航控制系统(ACC)。上层控制方案由距离和速度控制器组成。该控制器生成所需的加速度轮廓,低级控制器必须尽可能紧密地遵循。具有很高精度的模糊自适应输出反馈控制器会产生这种所需的加速度。此外,自适应观察者估计无法测量的状态。较低级别的控制器调整节气门和制动执行器。在较低级别上,主动干扰排斥控制器(ADRC)消除了应用于汽车的所有内部和外部干扰。ADRC参数是通过粒子群遗传优化算法调整的。证明了所有信号的闭环稳定性和半全球均匀的界限。此外,还保险了ADRC控制器估计误差的渐近收敛性。为了显示所提出方法的有效性,将提出的算法与预测控制器进行了比较,并证明了该方法的性能优越性。
随着信息技术的发展,基于模糊的系统在计算智能上很流行,并应用于信息科学,数学,控制工程和消费电子等领域。尤其是在消费电子领域中,基于模糊的系统有助于基于数据和知识的建模,并处理具有数量和定性复杂性的现实世界问题,并在维度和不确定性中处理。基于模糊的系统与消费电子设备的婚姻将以人们与设备互动的方式进行革命。从基于细微的因素调整温度的智能恒温器中,以了解语言的微妙之处的语音助手,基于模糊的系统为我们的小工具带来了类似人类的理解和适应性。处理不确定性和不准确的能力为更个性化,高效和以用户为中心的体验铺平了道路。随着消费电子领域的不断发展,其与模糊逻辑的集成将发挥更大的重要作用,预计会扩展,从而提供更智能和以用户的解决方案。因此,当传统的二元逻辑无法处理不精确或不确定的信息时,基于模糊的系统是宝贵的。
摘要。随着灵活的负载和能源存储的快速发展,它具有巨大的科学和工程价值,可以通过协调的生成网格加载存储控制使用HVDC Feed-Infi-Infer Power提高接收端电源系统的安全性和经济性。在本文中,提出了一种基于模糊的推理方法,以评估具有HVDC馈电功率的接收端功率系统的生成网格加载存储控制能力的协调控制能力。首先,通过考虑发电,电网,电力负载和能源存储的协调和相互作用来构建评估索引。主观重量和客观重量都被认为可以计算每个评估指数的全面权重。此外,在每个评估指数中提出了基于Kmeans聚类的方法。最后,通过提出的方法评估了不同状态下修改的IEEE 57-BUS系统的协调控制能力。
