行为毒理学是通过毒性化学物质或诸如辐射诸如引起行为功能功能功能障碍的辐射的神经系统破坏的研究。大脑是人体最复杂的器官,是通信的器官,并为我们的行为功能的完整曲目提供了底物(Harry等,2022)。对大脑神经元和神经胶质的有毒作用可以在各种行为功能中产生损害,包括感觉知觉,运动活动,情绪和认知。行为毒理学一直是一个积极的研究领域,已经有半个多世纪的历史了。已经研究了各种多样性毒素和毒性的行为毒性,包括铅,汞和镉,有机氯,有机磷酸盐,拟磷酸盐,拟甲虫类和新烟碱性农药,多环芳族芳族芳族芳族芳族芳族芳族,火焰碳素,火焰阻滞剂以及许多其他环境化学物质和许多药物和许多药物。行为毒理学对于确定神经毒性的功能影响很有用,也有助于提供一种用于确定功能障碍的关键神经毒性机制的方法。
人类药物的非临床测试是为了评估在人类临床试验中研究的化合物的安全性以及新药的营销。尽管安全性评估所需的非临床研究的数量和类型没有确切规定,因为每种新化合物都具有固有的灵活性,但传统方法在各种 FDA 和 ICH 指导文件中都有概述,并且涉及体外测定和整体动物测试方法的组合。科学的最新进展导致出现了许多用于非临床测试的新方法 (NAM),这些方法目前正用于药物开发的各个方面。传统的非临床测试方法可以预测临床结果,尽管鼓励并需要改进这些方法以提高临床结果的可预测性。本文讨论了 FDA/CDER 对在药物开发中使用 NAM 的机会和挑战的看法,尤其是出于监管目的,还包括 NAM 目前用于非临床安全性评估以及它们可能补充和/或增强当前测试方法的示例。 FDA/CDER还鼓励与利益相关者就NAM进行沟通,并致力于探索使用NAM来提高监管效率并可能加快药物开发。
N-亚硝胺药物杂质是FDA关注的重点,尤其是由药物本身形成的亚硝胺杂质,称为N-亚硝胺药物相关杂质或NDSRI。杂质可以在药物生命周期的任何时间形成,例如作为合成副产物、在储存过程中以及在接受治疗的患者体内产生的NDSRI。使用突变试验可以识别可能增加癌症风险的N-亚硝胺杂质;具有致突变性的N-亚硝胺被认为是致癌物质,在药物中的含量被控制在非常低的水平。因此,FDA开发能够识别致突变N-亚硝胺的测试模型非常重要。DGMT科学家与药物评估和研究中心(CDER)亚硝胺药物杂质工作组合作,使用体外细菌和人类细胞突变试验评估一系列小分子N-亚硝胺和NDSRI的致突变性和遗传毒性。此外,还使用二维 (2D) 和三维 (3D) 人类肝细胞 (HepaRG) 模型测试了八种不同的 N-亚硝胺的遗传毒性。最后,对不同的 N-亚硝胺在转基因啮齿动物中的致癌性进行了评估。这些研究的目的是开发筛选和后续检测方法,以高置信度确定 N-亚硝胺药物杂质的癌症风险。以下出版物描述了这些研究的结果:Regul Toxicol Pharm 和 Arch Toxicol。
前言这种毒理学特征是根据由有毒物质和疾病注册机构(ATSDR)和环境保护署(EPA)制定的指南*制定的。原始准则于1987年4月17日发布在联邦公报上。每个配置文件将在必要时进行修订和重新发布。ATSDR毒理学概况简洁地表征了其中描述的这些毒性物质的毒理和不良健康效应信息。每个经过同行评审的轮廓都识别并回顾了描述物质毒理学特性的关键文献。也提出了其他相关文献,但所描述的不如关键研究详细描述。配置文件并非旨在成为详尽的文件;但是,提到了更全面的专业信息来源。概况的重点是健康和毒理学信息;因此,每种毒理学特征都始于与公共卫生讨论的相关性,这将使公共卫生专业人员能够实时确定环境中特定物质是否对人类健康构成潜在威胁。在健康效应摘要中描述了信息确定物质健康效应的信息的充分性。对保护公共卫生具有重要意义的数据需求是由ATSDR确定的。每个配置文件包括以下内容:
样本提交毒理学实验室为华盛顿州内的所有执法机构,验尸官和体检医师提供法医毒理学服务。实验室分析血液,尿液和其他生物组织或液体,以便存在酒精和/或药物。样本收集套件毒理学实验室可以为用户机构提供用于采样的套件。要订购任何材料,请致电或给实验室发送电子邮件。切勿提交带有样品的其他任何针头的真空管收集针或任何其他针。要求护士或静脉局师重新安置针头,使他/她的人面临不必要的风险,并且违反了OSHA法规。毒理学实验室将不接受任何带有针头的针或注射器的情况。同样,请勿提交贝达丁湿巾或纱布 - 这些被收到时被丢弃。注意:联邦和州法规禁止从注射器上切割或剪切针头。[WAC 296-823-14010]
ACGIH American Conference of Governmental Industrial Hygienists AIC Akaike's information criterion ALD approximate lethal dosage ALT alanine aminotransferase AST aspartate aminotransferase atm atmosphere ATSDR Agency for Toxic Substances and Disease Registry BMD benchmark dose BMDL benchmark dose lower confidence limit BMDU benchmark dose upper confidence limit BML benchmark concentration lower confidence limit BMCU benchmark concentration upper confidence limit BMDS Benchmark Dose Software BMR benchmark response BUN blood urea nitrogen BW body weight CA chromosomal aberration CASRN Chemical Abstracts Service Registry Number CBI covalent binding index CHO Chinese hamster ovary (cell line) CL confidence limit CNS central nervous system CPN chronic progressive nephropathy CYP450 cytochrome P450 DAF循环系统的DAF剂量测定调节因子DCS疾病DEN二乙基硝基胺DMSO DMSO二甲基硫氧化二甲基二甲基二甲基甲酸DNA DNA脱氧核心酸EPA环境保护剂环境保护局FDA食品和药物管理FEV 1二秒ggd gd gd gd gd gd gd gd gd gd gdm glitem glutem ste转移酶GSH谷胱甘肽GST GST谷胱甘肽-S-转移酶HAWC健康评估工作空间协作HB/G-A动物血液:气体分区系数HB/G-H人体血液人体血液:气体分配系数HEC人类等效浓度HED人类等效剂量剂量剂量英雄健康和环境研究在线在线
n-(1,3-二甲基丁基)-N' - 苯基 - 苯基 - 苯基二氨基氨基(6PPD),一种广泛用于橡胶工业的合成添加剂,其氧化产物6ppd-奎因酮(6PPDQ)已广泛关注其潜在的化学效果,从而广泛地关注了它们的潜在化学效果,从而对其进行了危险效应。6ppd和6ppdq对女性生殖道的影响,尤其是胚胎植入,尚不清楚,并在这项研究中进行了研究。我们分别使用了人类胚泡和子宫内膜上皮的替代物的tropho blastic球体和Ishikawa细胞的球体附着和产物模型。用化学物质处理长达48小时,以剂量和细胞系依赖性方式降低了细胞的活力(两种细胞系的20 - 100μm6ppd和10-100μm6ppdq)。在非毒素浓度下,Ishikawa细胞暴露于1和10μm6ppd会降低贝型球体的附着,并进一步抑制其在子宫内膜上皮单层上的侵袭和出生。在1μm6ppDQ暴露组中观察到了类似的结果。6PPD和6PPDQ暴露的子宫内膜上皮细胞的基因表达分析表明,6PPD和6PPDQ均以差异调节转录标记物的整体下调接受和浸润。这项研究提供了6ppd和6ppdq对人子宫内膜接受能力和滋养细胞侵袭的第一个证明,这是在植物窗口期间的,因此有必要进一步进行体内和临床研究。