前言 本毒理学概况是根据美国有毒物质和疾病登记署 (ATSDR) 和环境保护署 (EPA) 制定的指南编写的。原始指南于 1987 年 4 月 17 日在《联邦公报》上发布。每份概况将根据需要进行修订和重新发布。ATSDR 毒理学概况简明扼要地描述了其中描述的这些有毒物质的毒理学和不良健康影响信息。每份同行评审的概况都会确定和审查描述物质毒理学特性的关键文献。还介绍了其他相关文献,但描述不如关键研究详细。本概况并非详尽无遗的文件;但是,参考了更全面的专业信息来源。概况的重点是健康和毒理学信息;因此,每个毒理学概况都以与公共卫生讨论的相关性开始,这将使公共卫生专业人员能够实时确定环境中某种物质的存在是否对人类健康构成潜在威胁。健康影响摘要中描述了确定物质健康影响的信息充分性。ATSDR 和 EPA 确定了对保护公众健康具有重要意义的数据需求。每个概况包括以下内容:
公众参与就是与人建立联系,其中包括与合作伙伴密切合作,帮助我们接触新的受众并实现我们的目标。我们将与精心挑选的合作伙伴合作,与我们的目标受众建立联系,建立新的可持续关系,并继续发展现有的关系,确保实现明确且互利的目标。
前言 本毒理学概况是根据美国有毒物质和疾病登记署 (ATSDR) 和环境保护署 (EPA) 制定的指南编写的。原始指南于 1987 年 4 月 17 日在《联邦公报》上发布。每份概况将根据需要进行修订和重新发布。ATSDR 毒理学概况简明扼要地描述了其中描述的这些有毒物质的毒理学和不良健康影响信息。每份同行评审的概况都会确定和审查描述物质毒理学特性的关键文献。还介绍了其他相关文献,但描述不如关键研究详细。本概况并非详尽无遗的文件;但是,参考了更全面的专业信息来源。概况的重点是健康和毒理学信息;因此,每个毒理学概况都以与公共卫生讨论的相关性开始,这将使公共卫生专业人员能够实时确定环境中某种物质的存在是否对人类健康构成潜在威胁。健康影响摘要中描述了确定物质健康影响的信息充分性。ATSDR 和 EPA 确定了对保护公众健康具有重要意义的数据需求。每个概况包括以下内容: (A) 检查、总结和解释可用的毒理学信息和对有毒物质的流行病学评估,以确定该物质对人类的重大暴露水平以及相关的急性、中期和慢性健康影响; (B) 确定是否有足够的关于每种物质对健康的影响的信息可用或正在开发中,以确定由于急性、中期和慢性持续时间的暴露而对人类健康造成重大风险的暴露水平;以及 (C) 在适当的情况下,确定需要进行的毒理学测试,以确定可能对人类健康造成重大不利影响风险的暴露类型或水平。毒理学概况的主要受众是联邦、州和地方各级的卫生专业人员;感兴趣的私营部门组织和团体;以及公众。ATSDR 计划根据公众意见和获得更多数据来修订这些文件。因此,我们鼓励提出意见,使毒理学概况系列发挥最大作用。可通过以下方式提交电子意见:www.regulations.gov。按照在线说明提交意见。书面意见也可发送至:有毒物质和疾病登记署创新和分析毒理学科办公室 1600 Clifton Road, N.E.邮寄地址 S102-1 Atlanta, Georgia 30329-4027
Aveiro大学生物学和CESAM,葡萄牙B莱顿大学Aveiro 3810-193,环境科学研究所(CML),P.O。 Box 9518,2300 Ra Leiden,荷兰C国家公共卫生与环境研究所(RIVM),物质与产品安全中心,P.O。 Box 1,Bilthoven,Bilthoven,荷兰D生物技术研究所,赫尔辛基大学,芬兰E FHAIVE,芬兰医学与卫生技术学院,芬兰坦佩雷大学,芬兰大学,德国联邦风险评估研究所(BFR),化学与产品安全部,柏林,柏林,柏林,柏林,柏林,柏林,GREPESSITION,IOM GINUCIENTINC Helmholtz环境研究中心生物学 - UFZ,Permoserstr。 15,04318莱比锡,德国萨克森州I Ecoscience,Aarhus University,C.F。 MøllersAlle 4,DK-8000 Aarhus,丹麦Aveiro大学生物学和CESAM,葡萄牙B莱顿大学Aveiro 3810-193,环境科学研究所(CML),P.O。Box 9518,2300 Ra Leiden,荷兰C国家公共卫生与环境研究所(RIVM),物质与产品安全中心,P.O。 Box 1,Bilthoven,Bilthoven,荷兰D生物技术研究所,赫尔辛基大学,芬兰E FHAIVE,芬兰医学与卫生技术学院,芬兰坦佩雷大学,芬兰大学,德国联邦风险评估研究所(BFR),化学与产品安全部,柏林,柏林,柏林,柏林,柏林,柏林,GREPESSITION,IOM GINUCIENTINC Helmholtz环境研究中心生物学 - UFZ,Permoserstr。 15,04318莱比锡,德国萨克森州I Ecoscience,Aarhus University,C.F。 MøllersAlle 4,DK-8000 Aarhus,丹麦Box 9518,2300 Ra Leiden,荷兰C国家公共卫生与环境研究所(RIVM),物质与产品安全中心,P.O。Box 1,Bilthoven,Bilthoven,荷兰D生物技术研究所,赫尔辛基大学,芬兰E FHAIVE,芬兰医学与卫生技术学院,芬兰坦佩雷大学,芬兰大学,德国联邦风险评估研究所(BFR),化学与产品安全部,柏林,柏林,柏林,柏林,柏林,柏林,GREPESSITION,IOM GINUCIENTINC Helmholtz环境研究中心生物学 - UFZ,Permoserstr。 15,04318莱比锡,德国萨克森州I Ecoscience,Aarhus University,C.F。 MøllersAlle 4,DK-8000 Aarhus,丹麦Box 1,Bilthoven,Bilthoven,荷兰D生物技术研究所,赫尔辛基大学,芬兰E FHAIVE,芬兰医学与卫生技术学院,芬兰坦佩雷大学,芬兰大学,德国联邦风险评估研究所(BFR),化学与产品安全部,柏林,柏林,柏林,柏林,柏林,柏林,GREPESSITION,IOM GINUCIENTINC Helmholtz环境研究中心生物学 - UFZ,Permoserstr。15,04318莱比锡,德国萨克森州I Ecoscience,Aarhus University,C.F。MøllersAlle 4,DK-8000 Aarhus,丹麦MøllersAlle 4,DK-8000 Aarhus,丹麦
慢性疼痛研究的出版物数量不断增加,但安全有效的慢性疼痛治疗方法仍然难以捉摸。对慢性疼痛性别特异性机制的认识导致了包括两性在内的大量研究。主要关注点是识别性别差异,但许多新发现的细胞机制和基因表达改变在两性之间是保守的。在这里,我们回顾了驱动神经性疼痛产生和消退的细胞和分子信号的性别差异和相似性。差异和相似性的混合反映了外周和中枢信号传导过程的退化,神经元、免疫细胞和神经胶质细胞通过这些过程共同驱动疼痛过敏。最近发现的关键信号节点预示着合理设计、广泛适用的镇痛策略的发展。然而,有效、安全的疼痛治疗方法的匮乏也迫使有针对性的治疗方法增加治疗选择,以帮助减轻全球痛苦负担。
迄今为止,人工智能 (AI) 和机器学习 (ML) 在药物研发中的应用主要集中在以下研究方面:靶标识别;基于对接、片段和基序生成化合物库;合成可行性建模;根据与具有已知活性和对靶标亲和力的化合物的结构和化学计量学相似性对可能的命中结果进行排序;优化较小的库以进行合成和高通量筛选;结合筛选证据来支持命中结果到先导化合物的决策。将 AI/ML 方法应用于先导化合物优化和先导化合物到候选化合物 (L2C) 决策的进展较慢,尤其是在预测吸收、分布、代谢、排泄和毒理学特性方面。本综述调查了造成这种情况的原因,报告了近年来取得的进展,并总结了一些仍然存在的问题。有效的 AI/ML 工具可以降低 L2C 和后期开发阶段的风险,对于加速药物开发过程、降低不断上升的开发成本和实现更高的成功率至关重要。
人们长期以来都认识到,来自人类遗传学研究的信息有可能加速药物发现,这导致了数十年的研究如何利用遗传和表型信息进行药物发现。已建立的简单和高级统计方法允许通过基因组和表型组分析同时分析基因型和临床表型数据,使用来自不同组织的转录组学和蛋白质组学数据集的数量性状基因座数据进行共定位分析,以及孟德尔随机化是后基因组时代药物开发的重要工具。大量研究表明基因组数据如何为识别新药物靶点、药物重新利用和药物安全性分析提供机会。随着生物库数量的增加,它们能够通过电子健康记录将深入的组学数据与丰富的表型性状库联系起来,评估和验证药物靶点的更有效的方法将继续扩展到不同临床研究学科。
药理学和毒理学是理解化学和生物学之间关系的更广泛努力的一部分。虽然生物医学必然侧重于具体案例,通常与人类有直接关系,但寻求更系统的方法来描述小分子和其他干预措施如何影响健康和疾病确实具有优势。在此背景下,斑马鱼现已成为具有代表性的可筛选脊椎动物,并且通过基因组编辑和自动表型分析的不断进步,开始解决一些生物医学问题的系统级解决方案。在临床前模型生物中整合信息内容的更广泛努力以及包括闭环深度学习在内的严格分析的结合,将有助于创建系统药理学和毒理学,并能够围绕社会需求不断优化化学生物相互作用。在这篇评论中,我们概述了朝着这一目标取得的进展。
塑料,持续有机污染物(POP)和重金属的人为释放可能会影响包括水生生态系统在内的环境。纳米塑料(NP)最近出现为普遍的环境污染物,具有吸附流行的能力并可能引起生物体的压力。在流行音乐中,DDT及其代谢产物是由于持久性的持续性而是ubiq是ubiq的环境污染物。尽管在欧洲停产的DDT使用,但DDT及其代谢产物(主要是P,P'-DDE)仍在鲑鱼水产养殖中使用的饲料中可检测到的水平上发现。我们的研究旨在将NP(50 mg/L聚苯乙烯)和DDE(100μg/L)的个体和联合毒性使用作为模型。我们没有发现单独暴露于NP的斑马鱼幼虫的形态,心脏,呼吸或行为变化。相反,在暴露于DDE和NPS + DDE的斑马鱼幼虫中观察到形态,心脏和呼吸道改变。有趣的是,仅在暴露于NPS + DDE的斑马幼虫中观察到行为变化。这些发现得到了RNA-Seq结果的支持,这表明仅在暴露于NPS + DDE的斑马幼虫中,某些心脏,血管和免疫原性途径被下调。总而言之,我们发现与NP结合使用DDE的毒理学影响增强。
1972 年年底,美国环境保护署署长威廉·鲁克尔豪斯宣布取消 DDT 的登记,实际上禁止在美国使用这种自二战后推出以来最流行的杀虫剂之一。环保主义者称赞 DDT 的禁令是美国环保运动的最高成就,也是自 1962 年雷切尔·卡逊出版《寂静的春天》以来十年环保主义运动的顶峰。卡逊对美国化学农药的滥用及其所造成的大面积生态污染进行了严厉批评,很少有其他书籍能像它一样俘获了美国人的心,并在总统科学顾问委员会和国会引发了广泛的听证会。 1970 年《国家环境保护法》的通过和同年环境保护署 (EPA) 的成立向美国人发出信号,他们的担忧已被听到。DDT 禁令终止了美国最臭名昭著、对环境破坏最大的化学物质之一的使用。还有比这更完美的结局来结束美国农业和公共卫生历史上的黑暗篇章吗?1982 年 5 月,几位观鸟朋友(退休人员)邀请我和他们一起在纽约州罗切斯特附近,在一天内寻找尽可能多的鸟类。重要的一天从凌晨 1 点开始,我们出发寻找夜间活动的猫头鹰和夜鹰。到 4 点 30 分,我们到达了挪威路,这是罗切斯特以西著名的候鸟热点。在清晨的黑暗中,我们听到了一只美洲丘鹬的叫声,