a 马德里卡洛斯三世大学信号理论与通信系,28911 Legan ´ es,马德里,西班牙 b 伦敦都市大学通信技术中心,英国 c 米兰比可卡大学物理系,20126,米兰,意大利 d 电气工程与计算机科学学院,KTH 皇家理工学院,SE 100 – 44 斯德哥尔摩,瑞典 e TSC。奥维耶多大学电气工程系,33203 Gij ´ on,西班牙 f 焦夫大学工程学院电气工程系,Sakaka 42421,沙特阿拉伯 g LEME,UPL,巴黎南泰尔大学,F92410,阿夫雷城,法国 h 国家科学研究所 (INRS),蒙特利尔,QC,H5A 1K6,加拿大 i 法兰西理工大学,CNRS,里尔大学,ISEN,里尔中央大学,UMR 8520,微电子和纳米技术研究所 (IEMN),F-59313 瓦朗谢讷,法国 j INSA Hauts de France,F-59313 瓦朗谢讷,法国 k电气、电子与通信工程系及研究所智慧城市,纳瓦拉公立大学,31006 潘普洛纳,西班牙 l 蒙特雷技术大学,工程与科学学院 m 罗马大学“Tor Vergata”电子工程系,Via del Politecnico 1,00133 罗马,意大利
本版新增内容 5 低噪声放大器 5 低相位噪声放大器 5 宽带分布式放大器 5 线性放大器和功率放大器 5 GaN 功率放大器 5 数字步进衰减器 5 I/Q 下变频器/接收器 5 I/Q 上变频器/下变频器/收发器 6 集成 LO 的 I/Q 解调器 6 V 波段发射器/接收器 6 集成 VCO 的整数 N PLL 6 模拟可调低通/带通滤波器 6 数字可调滤波器 6 SPDT 开关 7 SP3T、SP4T、SP6T、SP8T 开关 7 波束形成器 7 高速模数转换器 >20 MSPS 7 高速数模转换器 ≥30 MSPS 7 时钟发生器和同步器 7 5G 毫米波网络无线解决方案和 Massive MIMO 解决方案 7 业界最完整的 24 GHz 至 29.5 GHz MMW 5G 网络无线解决方案 8 业界最完整的 37 GHz 至 43.5 GHz MMW 5G 网络无线解决方案 9 Massive MIMO(M-MIMO):5G 速度竞赛的快速通道 10
低噪声放大器 5 低相位噪声放大器 5 宽带分布式放大器 5 线性放大器和功率放大器 5 GaN 功率放大器 5 数字步进衰减器 5 I/Q 下变频器/接收器 5 I/Q 上变频器/下变频器/收发器 6 集成 LO 的 I/Q 解调器 6 V 波段发射器/接收器 6 集成 VCO 的整数 N PLL 6 模拟可调低通/带通滤波器 6 数字可调滤波器 6 SPDT 开关 7 SP3T、SP4T、SP6T、SP8T 开关 7 波束形成器 7 高速模数转换器 >20 MSPS 7 高速数模转换器 ≥30 MSPS 7 时钟发生器和同步器 7 5G 毫米波网络无线电解决方案和大规模 MIMO 解决方案7 业界最完整的24 GHz 至 29.5 GHz MMW 5G 网络无线解决方案 8 业界最完整的37 GHz 至 43.5 GHz MMW 5G 网络无线解决方案 9 大规模 MIMO (M-MIMO):5G 速度竞赛的快车道 10
稿件收到日期为 2022 年 2 月 13 日;接受日期为 2022 年 3 月 14 日。出版日期为 2022 年 4 月 12 日;当前版本日期为 2022 年 6 月 7 日。这项工作部分由 TEAM-TECH 项目资助,该项目名为“微电子材料毫米和亚太赫兹波段高精度表征技术”,由波兰科学基金会 TEAM TECH 计划运营,由欧洲区域发展基金、2014-2020 年智能增长运营计划共同资助,部分由 TEMMT 资助,该项目获得了参与国共同资助的 EMPIR 计划和欧盟地平线 2020 研究与创新计划 18SIB09 项下的资金。 (通讯作者:Bartlomej Salski。)Jerzy Krupka 就职于华沙理工大学微电子与光电子研究所,邮编:00-661 Warsaw, Polish。 Bartlomiej Salski、Tomasz Karpisz 和 Pawel Kopyt 就职于华沙理工大学无线电电子学和多媒体技术研究所,邮编:00-661 Warsaw,Poland(电子邮件:bsalski@ire.pw.edu.pl)。 Leif Jensen 就职于 Topsil Semiconductor Materials A/S(地址:3600 Frederikssund,丹麦)。 Marcin Wojciechowski 就职于中央措施办公室,地址:00-139 华沙,波兰。本文于 2022 年 6 月 19 日至 24 日在美国科罗拉多州丹佛市举行的 IEEE MTT-S 国际微波研讨会 (IMS 2022) 上发表。本信中一个或多个图片的彩色版本可在 https://doi.org/10.1109/LMWC.2022.3161393 上找到。数字对象标识符 10.1109/LMWC.2022.3161393
连同低地球轨道 (LEO) 卫星星座,在平流层运行的高空平台站 (HAPS) 系统(或高空伪卫星)有可能解决提供无处不在的连接这一挑战。尽管在推出高速移动网络以服务主要人口中心方面取得了巨大进展,但地面连接永远无法真正覆盖地球表面的每个部分。为了充分兑现 5G 的承诺并解决“数字鸿沟”,必须为地面移动网络不可行的人口稀少地区提供覆盖。这不仅对于改善个人通信尤为重要,而且因为许多物联网 (IoT) 传感器需要位于这些地区。本文概述了 HAPS 和卫星在形成“空中网络”中的作用,并描述了在设计地球与卫星或 HAPS 之间以及平台之间回程数据所需的高数据速率(10Gbps 以上)通信链路时的一些 RF 挑战。
G. Ejlali 1、⇤、R. Adam 2、P. Ade 3、H. Ajeddig 4、P. André 4、E. Artis 5、H. Aussel 4、A. Beelen 6、A. Benoît 7、S. Berta 8、L. Bing、Orion、A. Bour 7、Cal. ano 5、I. de Looze 17、18、M. De Petris 10、F.-X. Désert 11、S. Doyle 3、EFC Driessen 8、M. Galametz 4、F. Galliano 4、A. Gomez 12、J. Goupy 7、AP Jones 6、A. Hughes 13、S. Katsioli 15,16、F. Kéru 5、C. Lamer 14、B. Lamer .、G. Lagache 9、S. Leclercq 8、J.-F.莱斯特拉德 19 ,J.-F. Macías-Pérez 5 , SC Madden 4 , A. Maury 4 , P. Mauskopf 3 , 20 , F. Mayet 5 , A. Monfardini 7 , M. Muñoz-Echeverría 5 , A. Nersesian 15 , 17 , L. Perotto 5 , G. Pino , V. Revéret 4 , AJ Rigby 3 , A. Ritacco 6 , 21 , C. Romero 22 , H. Roussel 23 , F. Ruppin 25 , K. Schuster 8 , S. Shu 26 , A. Sievers 14 , MWSL Smith 3 , Tabai FS , C. Xilo , 23 , 23 . p 15 , 和 R. Zylka 8
本文介绍了使用高采样率和微米级精度的现代毫米波雷达进行距离测量的进展。对于导航中的雷达距离测量,高精度测量距离和高采样率测量精确距离非常重要,这样才能直接估算物体的加速度和速度。我们提出了一种场景,其中自动驾驶汽车完全依靠雷达距离传感器的测量来在 GNSS 降级环境中进行定位。根据给定的场景,列出了对雷达传感器的要求,并开发和构建了符合给定要求的原型雷达传感器。在实验室中验证了原型传感器的特性。将雷达传感器装置集成到自动驾驶汽车上,并在自动驾驶地面车辆上进行基本定位和物体检测测试。
摘要 — 我们提出了一种新型紧凑型宽带波导 T 结功率分配器,特别适用于毫米波和太赫兹频率。它将基于基板的元件整合到波导结构中,以提供输出端口的隔离和匹配。内部端口引入在基板上形成为 E 探针的 T 结的顶点。这有助于将反射能量从输出端口有效地耦合到与 E 探针集成在同一基板上并通过薄膜技术制造的新型薄膜电阻终端。设计、模拟和制造了适用于 150-220 GHz 频带的功率分配器,以实验验证理论和模拟性能。结果表明,模拟和测量结果具有极好的一致性,对于三端口设备,输入和输出端口的回波损耗显著为 20 dB,输出端口之间的隔离度优于 17 dB。此外,测量的插入损耗小于 0.3 dB,幅度和相位不平衡分别为 0.15 dB 和 0°。此外,分压器对内置吸收负载的电阻材料的尺寸和薄层电阻具有出色的耐受性,使该设备成为毫米波和太赫兹系统(特别是射电天文接收器)非常实用的组件。
b'摘要 提出了一种毫米波\xe2\x80\x90 低\xe2\x80\x90 轮廓宽带微带天线。为了加宽阻抗带宽并同时实现稳定的大增益,在由同轴探针馈电的微带贴片两侧布置共面寄生贴片阵列。在微带贴片上蚀刻双槽以降低 H \xe2\x80\x90 平面交叉\xe2\x80\x90 极化水平。提出了使用 Floquet \xe2\x80\x90 端口模型进行零\xe2\x80\x90 相位\xe2\x80\x90 反射分析以预测寄生贴片阵列的谐振频率。根据理想探针的输入阻抗来验证激发的谐振模式。依次激励两个相邻的宽边谐振,分别以微带贴片的准 \xe2\x80\x90 TM 10 模式和寄生贴片阵列的准 \xe2\x80\x90 TM 30 模式为主导。所提出的天线尺寸为 1.06 1.06 0.024 \xce\xbb 0 3(\xce\xbb 0 为自由空间中 29 GHz 的波长),在 | S 11 | \xe2\x89\xa4 10 dB 时实现 15%(27\xe2\x80\x93 31.35 GHz)的阻抗带宽。实现的峰值增益高达 9.26 dBi,2 \xe2\x80\x90 dB 增益带宽为 15.7%。 H \xe2\x80\x90 平面交叉 \xe2\x80\x90 极化水平在 3 \xe2\x80\x90 dB 波束宽度内小于 14 dB,背部辐射水平小于 17.9 dB。'
抽象的功率横梁是通过指令电磁梁在自由空间跨空间的有效的点对点传递。本文以简单的术语清楚地阐明了功率光束的基本原理,并提出了一种基准测试方法,用于改善功率光束系统和技术的比较评估。在过去60年中,在微波和毫米波(MMWave)实验演示中追踪全球进展的深入历史概述,表明了过去5年活动的显着增长。此外,对接收微波功率光束的可扩展Rectenna阵列的进度进行了综述,显示了新研究的足够成熟度,以启动该技术的坚固化,生产力和系统整合方面。对包括频谱管理和安全在内的监管问题的审查表明,需要其他技术解决方案和国际协调。Breaking results reported in this paper include 1) data from the first in-orbit flight test of a solar-to-RF “sandwich module”, 2) the construction of multiple US in-orbit demonstrations, planned for 2023 launch, that will demonstrate key technologies for space-based solar power, and 3) a 100-kW mmWave power beaming transmitter demonstrating inherent human life safety.