第三单元 能源与电池技术 [10] 燃料的定义和特性,燃料的类型,煤炭分析——工业分析和最终分析。石油及其精炼 裂解——定义、类型——移动床催化裂解工艺。爆震——辛烷值和十六烷值,气体燃料——氢燃料的类型,绿色氢气的产生——水电解机制。电池技术——定义、优质电池的特性、电池的分类——一次电池、二次电池、备用电池和燃料电池(附示例)。一次电池:锌空气电池——构造和工作原理。可充电电池:锂离子电池的构造和工作原理及其在电动汽车中的重要性。燃料电池——甲醇-氧燃料电池的定义、构造、工作原理、原理和应用。第四单元 腐蚀及其控制[8]
1 - 能源环境TSC概述和方法学活动技术筛查标准1.1。使用太阳能PV和CSP(包括电力,热量,冷却)1.2发电。风力发电1.3。从水力发电1.4发电。地热能的发电1.5。从生物能源发电1.6。海洋能量发电1.7。电力的传输和分布1.8。可再生和低碳气体的传播和分布1.9。电力的存储1.10。氢或其衍生物的存储1.11。从氢或其衍生物发电(例如氨)1.12。化石气体燃料的发电1.13。地区供暖和冷却系统1.14。从废热中产生热量或冷却1.15。化石燃料发电厂退役
此Bref包含12章。第1章和第2章提供了有关大型燃烧工厂工业部门以及该行业中使用的工业过程的一般信息。第3章提供了有关该部门内部装置环境性能的数据和一般信息。它还更详细地描述了预防的一般技术,或者在这是不切实际的情况下,可以减少确定蝙蝠时所考虑的该部门的安装的环境影响。第4章至第9章提供了以下有关特定燃烧过程的信息(气化,固体燃料的燃烧,液体燃料的燃烧,气体燃料的燃烧,多燃料燃烧和废物共同出现)。第10章介绍了指令第3(12)条所定义的蝙蝠结论。第11章介绍了有关指令第3(14)条所定义的“新兴技术”的信息。第十二章致力于为将来的工作提供总结的评论和建议。
为了通过稳定大气中的二氧化碳水平来避免全球变暖,功能性多孔材料领域正在进行大量研究活动。寻找高效、高性能的物理吸附剂来捕获和分离点源中的二氧化碳以及储存更清洁的气体燃料(如氢气和/或甲烷)被认为是一项重大挑战。在这项研究中(Soumya Mukherjee 等人,材料化学 A 杂志,7 (3),2019: 1055-1068),在典型的离子热条件下合成了一组新型的 1,2,3-三唑功能化共价三嗪骨架 (TzCTF),利用两个合理设计的 C3 对称三唑取代芳香三腈构件类似物,即 Tz-FCN 和 Tz-HCN,分别具有氟化和非氟化的苯基核心。获得的新型TzCTF材料
实现净零排放需要的远不止提供可再生电力。我们必须使用碳强度最低的液体和气体燃料形式的可再生碳氢化合物。事实上,我们必须超越能源,在氨(NH 3 )和甲醇(CH 3 OH)等化学品生产和钢铁生产中使用可再生绿色氢气。当我们生产生物甲烷(CH 4 )或绿色氢气(H 2 )时,我们都是在可再生气体中生产可再生氢分子。我们需要这些可再生气体和可再生碳氢化合物来用于可调度电力、长期能源储存和电力应用有限的领域。这些应用(称为难以减排的领域)包括:重型长途运输(卡车、轮船和飞机);高温工业用热(食品和饮料行业、钢铁生产、玻璃生产);农业(可再生肥料,如绿色氨和生物肥料);和化学品生产(如甲醇)。
图1以风格化的方式说明了水平和垂直能量过渡。在水平过渡中,一个国家的总能源需求保持恒定,而其可再生能源的份额则从25%线性增长到100%。在垂直过渡中,一个国家的总能源需求在其可再生能源份额的同时增长了线性增长,从25%线性增长到100%。水平能量过渡仅需要随着可再生能源的增长而逐步缩小遗产化石燃料的能力,而垂直过渡需要在近期备份备用可更可再生能源的能力(在这里假定为气体燃料的发生器),然后才能长期逐步淘汰它。没有新的可调节生成的垂直过渡将意味着可再生能源份额的实际增长速度比实际上更快地增加,以及在远远超过富裕国家所取得的范围内的短期和长期储能的部署。
15 带 Lambda 控制的 ELEKTRA 调试...................................................................................... 65 15.1 常规 IO 配置............................................................................................................... 65 15.2 CAN 通信............................................................................................................... 66 15.3 功能描述和配置....................................................................................................... 68 15.3.1 ELEKTRA 设定点.................................................................................................... 68 15.3.1.1 内部 Lambda 设定点......................................................................................... 68 15.3.1.2 外部 Lambda 设定点......................................................................................... 68 15.3.1.3 DcDesk2000 上的 Lambda 设定点............................................................. 69 15.3.1.4 DcDesk2000 上的燃气节流阀位置设定点............................................................. 69 15.3.1.5 安全备注......................................................................................................... 69 15.3.2 Lambda 控制参数........................................................................... 70 15.3.3 气体质量.............................................................................................................. 70 15.3.3.1 恒定气体质量............................................................................................... 70 15.3.3.2 可变气体质量............................................................................................... 70 15.3.4 发动机状态............................................................................................................. 71 15.3.5 气体燃料限制......................................................................................................... 73 15.3.5.1 固定启动燃料限制....................................................................................... 73 15.3.5.2 可变启动燃料限制....................................................................................... 73 15.3.5.3 速度相关燃料限制....................................................................................... 74 15.3.6 闭环 Lambda 控制............................................................................................. 74 15.3.7 安全功能............................................................................................................. 75
根据 CEF 条例第 20(4) 条,应特别考虑 PCI 和相关行动,旨在进一步整合内部能源市场,结束能源孤立和消除电力互联瓶颈,重点关注那些有助于实现 2020 年至少 10% 和 2030 年至少 15% 的互联目标的项目,以及有助于电力系统与欧盟网络同步的项目。根据 CEF 条例第 3 (2) b) 条,本征集提案优先考虑有助于经济脱碳的技术和 PCI。此外,还应考虑 TEN-E 条例的优先事项,例如需要反映沼气、可再生和低碳氢以及合成气体燃料消费的预期增长(第 13 和 15 至 17 条),以及需要加大对海上电网的投资,目标是达到至少 300 GW 的海上风电发电量(第 22 和 23 条)。人们认为,与 PCI 或 PMI 相关的行动的欧盟附加值由 PCI/PMI 状态本身体现。