摘要:光学遥感数据的大气校正需要确定气溶胶和气体的光学特性。提出了一种方法,该方法允许从无云情况下的投影像素中以低于 5 m 的空间采样间隔检测光学遥感数据的气溶胶散射效应。导出的气溶胶光学厚度分布用于改进大气补偿。第一步,一种新颖的光谱投影检测算法使用光谱指数确定阴影区域。对投影掩模的评估显示整体分类准确率在 80% 的水平上。使用这种导出的阴影图,将 ATCOR 大气补偿方法迭代应用于阴影区域,以找到最佳气溶胶量。通过分析完全阴影像素与直接照明区域的物理大气校正来找到气溶胶光学厚度。基于阴影的气溶胶光学厚度估计方法 (SHAOT) 在机载成像光谱数据以及摄影测量数据上进行了测试。对于所研究的测试案例,使用这种导出的气溶胶光学厚度进行大气校正的反射率值的精度可以从 3-4% 提高到优于 2% 的水平。
安诺卡 ................................. 763-324-4260 .............................. https://www.anokacounty.us/ 卡弗 ........................................ 952-361-1800 ......................... http://www.co.carver.mn.us/ 达科他州 ........................................ 952-891-7557 ......................... https://www.co.dakota.mn.us/ 亨内平 ................................... 612-348-3777 ......................... http://www.hennepin.us/ 拉姆齐 ........................................ 651-266-1199 .............................. https://www.ramseycounty.us/ 斯科特 ........................................ 952-496-8177 .................... http://www.scottcountymn.gov/ 华盛顿 ................................ 651-430-6655 ........... https://www.co.washington.mn.us/
本章首先引入大气气溶胶的复杂性质,它们的来源,形成和特性,并描述了它们与云的相互作用。这是通过影响云的辐射特性直接和间接地讨论气溶胶如何影响气候的重要背景信息。气溶胶 - 云 - 气候相互作用的复杂性在未来气候的投影中引起了巨大的不确定性。提出了对欧洲地区的不同建模研究的结果,这些研究表明,大气气溶胶浓度和特性的空间和时间变化很大,其对气候的影响有很大的区域差异。本章以共同有益的全球空气质量和气候变化情景为例。
作者:VR Després · 2012 · 被引用 1482 次 — 背景气溶胶特性。使用荧光气动颗粒物测量仪测量:FLAPS 性能的灵敏度。国防研究机构...
核气溶胶研究始于 20 世纪 60 年代末和 70 年代初。自 1979 年以来,CSNI 赞助的三份核气溶胶最新报告 (SOAR) 的发布证明了实验研究和代码开发方面取得的进展。最初,快堆安全是这项工作的主要关注点,这反映在第一份气溶胶 SOAR 的内容中。1979 年的 TMI 事故激发了人们对 LWR 源项的兴趣,并导致对第一份 SOAR 的补充产生了兴趣,该补充集中于 LWR 气溶胶问题。与快堆情况相反,事故发生后 LWR 安全壳大气中存在的大量蒸汽往往会使气溶胶颗粒更紧凑,从而减少了定义形状因子的建模问题。另一方面,必须模拟两种新效应:由于蒸汽凝结到表面(扩散电泳)而导致的沉积以及蒸汽凝结到颗粒本身而导致的颗粒生长。
传感器类型 90° 光散射 范围 0.001 至 100 mg/m 3(根据 ISO 12103-1、A1 测试粉尘校准) 分辨率 读数的 ±0.1% 或 ±0.001 mg/m 3,以较大者为准 零点稳定性 使用 10 秒时间常数,24 小时内为 ±0.001 mg/m 3 颗粒大小范围 0.1 至约 10 微米 可调流速 1.4 至 2.4 l/min(标称 1.7) 温度系数 +0.001 mg/m 3 / °C(针对与 D UST T RAK 归零时的温度变化) 工作温度 32° F 至 120° F(0°C 至 50°C) 存储温度 -4° F 至 140° F(-20°C 至 60°C) 工作湿度 0 至 95% rh (非冷凝) 时间常数 可调范围:1 至 60 秒 数据记录 31,000 个数据点(每分钟记录一次,共 21 天) 记录间隔 可调范围:1 秒至 1 小时
摘要:今天,由于电导率高,石墨烯装载的纺织品被认为是有希望的智能服装。在这项研究中,我们报告了使用一步的气溶胶喷雾热解(ASP)工艺及其在智能纺织品上的潜在应用,该研究降低了用石墨烯(GO)胶体溶液(GO)制造的纯棉织物(R-GO)。ASP过程是有利的,因为它易于实现,并且可以应用于连续处理。更多,此过程从未应用于将R-GO沉积在纯棉布上。田间发射 - 扫描显微镜(Fe-SEM)观察,傅立叶变换红外(FT-IR)分析,拉曼光谱,X射线衍射(XRD)分析(XRD)分析和紫外线透射率(UVT)用于评估R-Go胶体的材料特性。还测量了电阻以评估样品的电导率。结果表明,R-GO被用在样品上迅速降低,并且具有最高电导率的样品显示出2.27kΩ /sq的电阻值。综上所述,结果表明,ASP方法表现出高电位,可有效沉积R-GO在棉布织物标本上,并且是开发基于导电棉的智能服装的前景。因此,这项研究也有意义,因为可以通过将R-GO沉积在纯棉织物上,因此可以新应用ASP工艺。