摘要:我们对使用激光技术对光学捕获的单个空气气溶胶粒子(特别是化学气溶胶粒子)的研究进行了广泛的评估。迄今为止,已经对气溶胶集合及其类似的块状样品进行了广泛的研究,并且已经对空气中的颗粒进行了很好的一般描述并被接受。然而,已经报告了观察到的气溶胶行为与预期的气溶胶行为之间存在很大差异。为了填补这一空白,单粒子研究已被证明是一个独特的交叉点,可以清楚地表示各种环境条件下影响整体气溶胶行为的微观特性和尺寸相关行为。为了实现这一目标,光学捕获技术允许保持和操纵单个气溶胶颗粒,同时提供显着的优势,例如非接触式处理、无需样品收集和制备、防止污染、适用于任何类型的气溶胶以及灵活适应各种分析系统。我们回顾了基于光粒子相互作用的光谱方法,包括弹性光散射、光吸收(腔衰荡和光声光谱)、非弹性光散射和发射(拉曼、激光诱导击穿和激光诱导荧光光谱)和数字全息术。激光技术提供了多种优势,例如高速度、高选择性、高精度以及实时、原位执行的能力。本评论特别讨论了每种方法,强调了优点和局限性、早期突破以及有助于更好地理解单个粒子和粒子集合的最新进展。
气溶胶喷射打印 (AJP) 是一种直接写入增材制造技术,已成为制造各种电子设备的高分辨率方法。尽管 AJP 在印刷电子行业中具有优势和关键应用,但 AJP 工艺本质上不稳定、复杂,并且容易出现意外的逐渐漂移,这会对印刷电子设备的形态产生不利影响,从而影响其功能性能。因此,对 AJP 进行现场过程监控和控制是不可避免的需求。在这方面,除了对 AJP 过程进行实验表征外,还需要物理模型来解释 AJP 中潜在的空气动力学现象。这项研究工作的目标是建立一个基于物理的计算平台,用于预测气溶胶流动状态,并最终实现对 AJP 过程的物理驱动控制。为了实现这一目标,我们的目标是提出一个三维 (3D) 可压缩、湍流、多相计算流体动力学 (CFD) 模型,以研究 AJP 过程中 (i) 气溶胶生成、(ii) 气溶胶输送和 (iii) 气溶胶在移动自由表面上沉积背后的空气动力学。沉积头以及气动雾化器的复杂几何形状是在 ANSYS - FLUENT 环境中建模的,基于专利设计以及从 3D X 射线微型计算机断层扫描 (l-CT) 成像获得的精确测量。随后使用光滑和软四边形元素的混合对构建的几何形状的整个体积进行网格划分,同时考虑膨胀层以获得靠近壁面的精确解决方案。采用基于密度和压力的 Navier-Stokes 形成的组合方法来获得稳态解,并将守恒不平衡控制在指定的线性化公差以下(即 10 6 )。使用具有可扩展壁面函数的可实现 k-e 粘性模型对湍流进行建模。此外,还建立了耦合的两相流模型来跟踪大量注入的粒子。CFD 模型的边界条件是根据从 AJP 控制系统记录的实验传感器数据定义的。使用因子实验验证了模型的准确性,该实验包括在聚酰亚胺基底上 AJ 沉积银纳米粒子墨水。本研究的结果为实施物理驱动的 AJP 现场监测和控制铺平了道路。[DOI:10.1115/1.4049958]
摘要。使用矢量线性离散纵坐标辐射传输 (VLIDORT) 代码作为前向模型模拟的主要驱动程序,开发了一种首创的数据同化方案,用于将臭氧监测仪 (OMI) 气溶胶指数 (AI) 测量值同化到海军气溶胶分析和预测系统 (NAAPS)。这项研究表明,与 NAAPS 自然运行的值相比,使用 OMI AI 数据同化可以显著降低 NAAPS 分析中的均方根误差 (RMSE) 和绝对误差。模型模拟的改进证明了 OMI AI 数据同化对于多云区域和明亮表面的气溶胶模型分析的实用性。然而,单独的 OMI AI 数据同化并不优于在无云天空和黑暗表面使用被动式气溶胶光学厚度 (AOD) 产品的气溶胶数据同化。此外,由于 AI 同化需要在前向模拟中部署完全多散射感知辐射传输模型,因此计算负担是一个问题。尽管如此,新开发的建模系统包含了紫外 (UV) 光谱中辐射同化的必要成分,我们的研究表明,未来在紫外和可见光谱中直接辐射同化,可能与 AOD 同化相结合,可用于气溶胶应用。可以添加其他数据流,包括来自对流层监测仪 (TROPOMI) 的数据、
1 SSAI,美国弗吉尼亚州汉普顿 2 美国国家航空航天局兰利研究中心,美国弗吉尼亚州汉普顿 3 萨斯喀彻温大学,加拿大萨斯喀彻温省萨斯卡通 4 美国国家航空航天局喷气推进实验室,加州理工学院,美国加利福尼亚州帕萨迪纳
1 沙特阿拉伯图沃阿卜杜拉国王科技大学 2 美国科罗拉多州博尔德市科罗拉多大学 CIRES 3 美国科罗拉多州博尔德市 NOAA 地球系统研究实验室
作者 NX Williams · 被引用 42 次 — 这项工作得到了国防部的支持。国防部国会指导的医学研究。计划 (CDMRP),奖励编号为 W81XWH-。17-2-0045 和...
调节两个电极之间的距离。这样可以实现更高的粒度分布和质量流量恒定性。此外,可以调节每个单个火花放电,原则上可以确定单个火花的能量。通过 UDP 协议进行以太网连接的 AK 协议是交付的一部分。
a 美国科罗拉多州丹佛市丹佛大学化学与生物化学系;b 德国美因茨马克斯普朗克化学研究所多相化学系;c 美国纽约州汉密尔顿市科尔盖特大学化学系;d 美国科罗拉多州柯林斯堡气溶胶设备公司;e 瑞士帕耶讷联邦气象和气候学办公室 MeteoSwiss;f 以色列生物研究所 (IIBR),以色列内斯茨奥纳;g 美国马里兰州劳雷尔约翰霍普金斯大学应用物理实验室应用生物科学组;h 德国美因茨马克斯普朗克化学研究所粒子化学系;i 美国华盛顿特区海军研究实验室光学科学部;j 美国华盛顿州里奇兰太平洋西北国家实验室大气科学与全球变化部;k 英国曼彻斯特大学 SEAES 大气科学中心;l 美国马里兰州阿德尔菲 CCDC 陆军研究实验室
新开发的高输出 BLAM 雾化器采用了 Collison 雾化器的喷射雾化原理,该原理长期以来一直被公认为高效雾化各种液体的技术。然而,BLAM 依赖于一种新的、正在申请专利的设计,这种设计比 Collison 或其他现有设备更高效地生成气溶胶,无论是在单程配置还是再循环配置中。这种创新设计允许用户以高颗粒浓度和非常窄的颗粒尺寸分布产生液体气溶胶。BLAM 可用作现有 Collison 型雾化器的改装件。改装套件包装为许多 Collison 雾化器的直接喷嘴替代品。