许多生物学过程和机制取决于DNA中碱基配对和氢键的细节。氢键由于难以可视化氢原子位置而通过X射线晶体学和冷冻EM进行量化,但可以通过溶液中的NMR光谱探测到位点特异性,而固态的固态,后者特别适合大型,缓慢滚动的DNA复合物。最近,我们表明低温动态核极化(DNP)增强的固态NMR是在本机样条件下在各种DNA系统中区分Hoogsteen碱基对(BPS)与规范的Watson-Crick BPS的有价值工具。在此使用12型摩尔DNA双工,在Watson-Crick或Hoogsteen确认中含有两个中央腺嘌呤 - 胸腺氨酸(A-T)BPS,我们证明了DNP固态NMR测量值,这些NMR的测量值是胸腺胺N3-H3键的长度,这些长度与N-H-H-H的详细信息敏感,并允许NH-H·n-H·的n-H·n-H·的水性键合敏感。相同的DNA序列上下文。对于此DNA双链体,对于Watson-Crick A-T和HOOGSTEEN A-T和HOOGSTEEN A(SYN)-T碱基对的有效相同的TN3-H3键长的长度为1.055±0.011Å和1.060±0.011Å,相对于参考磁键长度为1.015±0.010Å,分别为N-Acety-ny-acetyl ny-acetyl ny-acetyl ny-acetyl,分别为watson-Crick a-t和hoogsteen a(syn)a(syn)-t碱基对。非常明显的是,在模型DNA双链体的背景下,这些结果表明,watson-Crick和Hoogsteen BP构型构象异构体之间N-H··N-t a-t氢键没有显着差异。考虑到零点运动的先前量子化学计算预测有效较长的肽n-h键长度为1.041Å,与溶液和环境温度下的肽和蛋白质的固态NMR研究一致,以促进这些早期的研究tn3-h3键长度的直接比较。 Watson-Crick A-T和Hoogsteen A(Syn)-t BPS相对于1.041Å参考肽N-H键长。更一般地,基于低温DNP固态NMR的方法对N-H键长度进行高精度测量有望促进对一系列DNA复合物和基本配对环境的氢键的详细比较分析。
图4基于比较和PDDOCKQ分数,在顶部模型中再现氢键的数量的比较。(a)总界面氢键的数量; (b)模型中与参考结构中相同氢键能类别的总界面氢键的数量; (c)侧chain基碱氢键的总界面数量; (d)模型中与参考结构中相同的氢键能类别中的总界面Sidechain-base氢键的数量。P-值。
图 4. a) PeLED 的能级图。b) 原始器件和 DPPA 改性器件的归一化 EL 光谱。c) 电流密度-电压 (JV) 曲线和亮度-电压 (LV) 曲线。d) EQE-电流密度 (EQE-J) 曲线。e) 30 个器件的统计最大 EQE 值。f) 原始器件和 DPPA 改性器件的操作稳定性。
摘要:氢键 (HB) 是生物系统中最丰富的基序。它们在确定蛋白质-配体结合亲和力和选择性方面起着关键作用。我们设计了两个对药物有益的 HB 数据库,数据库 A 包括约 12,000 个蛋白质-配体复合物,约 22,000 个 HB 及其几何形状,数据库 B 包括约 400 个蛋白质-配体复合物,约 2200 个 HB,它们的几何形状和键强度通过我们的局部振动模式分析确定。我们确定了七种主要的 HB 模式,可用作从头 QSAR 模型来预测特定蛋白质-配体复合物的结合亲和力。据报道,甘氨酸是供体和受体谱中最丰富的氨基酸残基,而 N–H · · · O 是数据库 A 中最常见的 HB 类型。HB 倾向于处于线性范围内,且线性 HB 被确定为最强的。HB 角在 100–110° 范围内的 HB 通常形成分子内五元环结构,表现出良好的疏水性和膜通透性。利用数据库 B,我们发现了 2200 多种蛋白质-配体 HB 的广义 Badger 关系。此外,每种氨基酸残基和配体功能团之间的强度和出现图为新颖的药物设计方法和确定药物选择性和亲和力提供了极具吸引力的可能性,它们也可作为命中到先导化合物过程的重要工具。
电能存储是大规模部署和整合风能、太阳能等可再生但间歇性能源的重要组成部分。[1] 液流电池 (RFB) 是一种很有前途的电网级储能技术,由于其可扩展性高、放电时间长、储能与发电分离以及运行固有安全等特点,为深度脱碳提供了许多高价值机会。[2] 传统的液流电池采用低丰度金属离子氧化还原对,如钒,这与技术挑战有关,包括相对较低的能量密度以及高成本和环境问题,限制了它们广泛的商业成功。 [2–4] 近来,有机和有机金属氧化还原活性材料,如醌、[5] 吩嗪、[6] 氮氧自由基、[7] 紫精、[7,8] 芴酮、[9] 有机铁配合物、[10,11] 及其
氢键相互作用影响无数化学系统的性质。本文简要回顾了氢键在化学碳捕获中的重要性。然后,考虑到文献中的实验结果,我们假设循环 CO 2 容量可能会增强,这可能发生在某些热再生 CO 2 结合有机分子中,这些分子有利于 CO 2 吸收时的分子内氢键。这种效应类似于螯合效应,可能源于与分子内氢键对内部旋转自由度的限制相关的熵惩罚。我们进行了简单的计算来估计模型系统中这种影响的大小。然后,我们概述了一种更彻底的实验和计算方法。如果存在这种效应,预计在设计下一代碳捕获化合物方面应用有限。
a请参阅clogpalk.param.2.0(参数)和clogpalk.vbind.2.0(智能定义的向量绑定)[48]的补充信息中的文本文件,以通过Slope参数在Smarts中获得与非溶剂原子的数量相乘。b从Q(2.7;表2)用于二甲基苯胺从Q(3.8)中使用MSA(120Å2)和六烷基/水logP(-0.04)[59]的Q(1)计算为苯胺的Q(3.8)[59]。c从表1。D值未归一化,因为HBD子结构中的氢原子数量未归一化。e值适用于2-(3-苯佐羟丙基)-Imidazole
交叉率,k hop = 1 2 | ˙ q | e − βU ( q ∗ ) R q ∗ ∞ dqe − βU ( q ) ,其中 q 是公式单位的偶极矩,
由密切包装配体形成的非孔产物。用于比较,金属 - 具有协调键和共价键的有机框架(MOF)和共价有机框架(COF),可以基于网状化学的合理设计和合成。18,19因此,它需要一种新的合成方法来控制HOF的形成并丰富它们的结构多样性。模板合成一直是构建多孔材料(例如MOF和COF)的重要策略。例如,通过合成后的金属化/脱位,20,21金属交换,22 - 24或配体交换25 - 28已被广泛用于获得具有与MOF-emplate相同结构/拓扑的靶向功能MOF。这些模板合成利用了可逆的协调键,这些键可以在合成后的修改过程中破坏和改革。可逆协调键也已用于模板COFS 29和多孔聚合物的合成。30 - 32 Yaghi及其同事证明了一个代表性的例子,这些示例使用了Cu I-苯噻吩会协调部分的可逆形成/断裂来构建具有编织结构的COF。29铜中心在COF结构内的编织上是独立的,并用作将螺纹带入编织模式的模板,而不是更常见的平行排列。可以在不破坏COF结构的情况下去除弱的cu i。这些作品激发了我们使用协调债券指导HOF的组装。要实现协调键指导的HOF合成的设计,基于弱协调键的MOF将为
图 1. a) PPO-4000 在膨胀(4 o C)和塌陷(15 o C)构象下的 MD 模拟快照。碳原子以青色表示,氧以红色表示,氢以白色表示。为清晰起见,未显示水。b) PPO-4000(蓝色圆圈)和 PPO-2000(红色三角形)水溶液的相对热容量 𝛥𝐶 𝑝 与温度的关系。显示曲线作为视觉引导。(插图)分子量为 a. 4000 b. 2000 c. 1000 d. 725 的 PPO 水溶液的实验量热曲线 [28]。