DNA测序技术和生物毒素格式的进步揭示了微生物在医学和农业中产生具有不同用途的结构复杂的特殊代谢物的巨大潜力。然而,这些分子通常会重新检查结构修饰以优化它们以供应用,这可能是使用合成化学很难的。生物工程提供了一种互补的结构修饰方法,但通常会因遗传性棘手性而受到影响,并且需要对生物合成基因功能的理解。异源宿主中专门的代谢产物生物合成基因簇(BGC)可以解决这些问题。然而,当前的BGC克隆和操作方法是不具体的,缺乏实现的,并且可能非常昂贵。在这里,我们报告了一个基于酵母的平台,该平台利用了与转换相关的重组(TAR)进行高效率捕获和对BGC的并行操作。作为概念证明,我们克隆,杂酚表达和遗传分析了与结构相关的非核糖体肽epone-epone-epone- mycin和tmc-86a的BGC,阐明了这些重要蛋白质的生物合成中的模棱两可。我们的结果表明,epone- mycin BGC还指导TMC-86A的产生,并揭示了启动这两种代谢产物组装的对比机制。此外,我们的
对高性能锂离子电池的需求不断上升,对电动运输的关键,取决于诸如阴极中使用的富含Ni层的氧化氧化物Lini x Co y Al Z O 2(NCA)之类的关键材料。本研究研究了氧化还原机制,特别关注氧气在商业NCA电极中的作用,在各种条件下新鲜和老化(老化的细胞已经进行了> 900个周期,直到阴极容量保留约为80%)。我们的发现表明,氧气在NCA界限期间参与了电荷补偿,这是通过过渡金属(TM) - O键杂交的变化和部分可逆的O 2的形成,后者已经发生在3.8 V vs li/li +。老年NCA材料在循环超过50%SOC时,在保持可逆的O 2形成时,TM -O键杂交发生了更大的显着变化。镍被发现在整个界限中都具有氧化还原活性,并且在循环过程中显示出更古典的氧化态变化,而NI-O杂交的变化较小。相比之下,CO氧化还原活性依赖于co-O杂交的更大变化,只有较小的CO氧化态变化。NI-O键显示的循环键的键长几乎是Co-O键的两倍。NI-O 6八面体的大小与截然不见的状态的co-O 6八面体相似,但在岩石状态下较大,随着电池老化而增加的尺寸差异。这些对比的氧化还原活性直接反映在结构变化中。NCA材料在衰老时表现出纳米孔的形成,并讨论了与氧氧化还原活性的可能联系。Ni和CO与氧相互作用的差异提供了对Ni-Righ层次过渡金属氧化物电极的机理和电化学不稳定性的关键理解。我们的研究特别强调了氧气在电动车级NCA电极电化学性能中的作用的重要性,为创建下一代长寿命锂离子电池提供了重要的见解。
结果:两种物种之间的土壤特性和根部特征存在显着差异,其中有土壤水含量(SWC)和根际和散装土壤中的土壤有机碳(SOC)(p <0.05)。虽然根部渗出液的代谢物分类相似,但它们的成分变化,而萜类化合物是主要的差分代谢物。土壤微生物结构和多样性也表现出显着差异,网络中具有不同的关键物种,并且主要与氮和碳周期有关的差异功能过程。在根渗出物介导的根性状,土壤微生物和土壤特性之间观察到了强相关性。 HA网络中发现的主要代谢产物包括糖和脂肪酸,而HP依赖于二级代谢产物,类固醇和萜类化合物。在根渗出物介导的根性状,土壤微生物和土壤特性之间观察到了强相关性。HA网络中发现的主要代谢产物包括糖和脂肪酸,而HP依赖于二级代谢产物,类固醇和萜类化合物。
摘要:在文献中已经多次研究了环氧树脂和环氧基质复合材料的湿热衰老。模型来表示材料的扩散行为。用于可逆的扩散,给给双,fick和Carter和Kibler模型。已确定了许多相关的参数。通过统计分析的本综述的目标是确认或授权这些相关性,以强调其他相关性(如果存在),并确定最重要的研究。本研究的重点是Fick,Dual -Fick和Carter和Kibler模型的参数。为此,对从文献中描述的个体提取的数据进行了统计分析。框图和PCA分析被选择。 根据研究中选择的不同定性参数而明显差异。 此外,在文献中已经观察到的定量变量已经观察到的相关性。 另一方面,出现差异可能表明所使用的模型不适合某些材料。框图和PCA分析被选择。根据研究中选择的不同定性参数而明显差异。此外,在文献中已经观察到的定量变量已经观察到的相关性。另一方面,出现差异可能表明所使用的模型不适合某些材料。
与stenotrophomonas一个元素友菌的脱甲基酶(DMO)基因,该基因编码dicamba单氧酶(DMO)蛋白,该蛋白赋予了对Dicamba除草剂的耐受性。它还包含了R-2,4-二氯苯氧基氧化二加氧酶(RDPA)基因的修改版本,该基因编码芳氧化氢的苯二氧化碳(fops)(FOPS)和2,4-二氯苯二氧酸(2,4-D)dioxycy蛋白酶(Ftterers),该版本是芳氧基氧基氧基氧基丙酸酯(FOPS)的。对2,4-D除草剂的耐受性。此外,大豆周一表达了来自链霉菌毒素基因的磷酸蛋白N-乙酰基转移酶(PAT)基因的副本,该基因编码PAT蛋白,该蛋白质赋予了耐受性的耐胶质剂。拜耳还引入了源自Oryza sativa hppd抑制剂敏感1(His1)基因的二氧酶(TDO)基因,该基因表达了TDO蛋白以赋予耐甲替氏酮的耐受性。
摘要:环保溶液加工和光活性材料的低成本合成是有机太阳能电池商业化(OSC)的重要要求。尽管已经开发了各种水溶性受体,但可供处理的聚合物供体的可用性仍然非常有限。尤其是,现有聚合物供体的总体最高占用的分子轨道(HOMO)能级限制了功率转化效率(PCE)的进一步提高。Here, we design and synthesize two water/alcohol- processable polymer donors, poly[(thiophene-2,5-diyl)- alt -(2-((13-(2,5,8,11-tetraox- adodecyl)-2,5,8,11-tetraoxatetradecan-14-yl)oxy)-6,7-difluoroquinoxaline-5,8-diyl)] (p(qx8o-t))和poly [(硒苯2,5-二烯基) - alt-(2 - (((13-(2,5,5,8,11-(2,5,8,11-tetraoxadodec- yl))-2,5,5,8,8,11-tetraoxateTradecan-14-yl-14-yl)-6,7-6,7-二氟quinoxaline-5,5,8-piyylyyyyl)寡醇(乙二醇)(OEG)侧链,具有深HONO能级(〜- 5.4 eV)。以降低成本的几个合成和纯化步骤来实现聚合物的合成。理论计算发现,与烷基化的烷基化对应物相比,基于OEG的聚合物中观察到的带隙降低的介电环境变化是造成观察到的带隙降低的。这项研究为低成本,可加工的聚合物供体设计和具有高V OC的水性处理的OSC的制造提供了重要的线索。关键字:寡素(乙烯甘油),低成本,可供处理的全聚合物太阳能电池,生态兼容性,开路电压值得注意的是,基于p(qx8o-t)和poly [(n,n,n'--- bis(3-(2-(2-(2-(2-甲氧基) - 乙氧基)乙氧基)-2 - ((2-(2-(2-(2-(2-(2-甲氧基乙氧基)乙氧基)乙氧基)乙氧基)乙氧基) - 甲基) - 甲基)丙烯酸苯甲酸苯二甲酸苯乙烯1,4,5,8- bis(dicarbobimide)bis(dicarbobimide)(dicarbobimide)-2 boximide)-2,6-diene-andene-andene---------------------(2,2,5,5,5,5,5,5,5,5,5,5,5,5,5,5,(2) P(ndideg-t))活性层的PCE为2.27%,高开路电压(V OC)接近0.8 V,这是迄今为止据报道的AQ-ASPC的最高值之一。
曾经用水水文,允许在低温下通过聚合产生玻璃。上面在图1中说明了化学反应。作为TEO的情况,基于硅的溶胶 - 凝胶工艺是最受过研究的过程。使用最广泛的金属烷氧化物是烷氧基硅烷,例如四甲氧基硅烷(TMOS),(3-甲状腺氧基氧甲基丙基) - 三甲氧基硅烷(GPTMS),甲基三甲氧基硅烷(MTES)和3--(三甲基氧基二酰基)丙氧基甲基丙二醇甲基甲基丙二醇甲基甲基甲基丙烯酸酯(甲基甲基甲基甲基苯甲酸酯)使基于硅的溶胶 - 凝胶过程主要在杂交材料形成中的主要特征是使用有机修饰的硅烷的有机基团简单地掺入。的确,在通常使用的水性介质中,Si-C键增强了针对水解的稳定性,对于许多金属 - 碳键来说,情况并非如此,因此可以轻松地在形成的网络中轻松合并各种有机基团。溶胶 - 凝胶反应也是可能的。单独或与其他烷氧化物(如TEOS)组合,通常在溶胶 - 凝胶过程中使用其他烷氧化物,例如铝,钛酸盐,锆石等。金属和过渡金属烷氧对水解和凝结反应的反应性更高。在参考文献[8]中,报告并讨论了有关SOL-GEL技术的更多详细信息。
产品描述 PHENOXY PK™HB 树脂与大多数苯氧基树脂相比具有较低的粘度。苯氧基树脂(聚羟基醚)是坚韧、易延展、无定形的热塑性聚合物,具有出色的热稳定性、粘合强度和防潮性能。苯氧基树脂可以通过其羟基官能团与异氰酸酯、三聚氰胺树脂或酚醛树脂反应而交联。交联的苯氧基树脂在许多基材上表现出优异的耐化学性、硬度和附着力,包括钢、铝、玻璃和碳纤维以及尼龙和聚酯 (PET) 等塑料。PHENOXY PK™HB 还可以配制成含有潜在硬化剂(如双氰胺)的单组分环氧树脂,在适当固化后可在基材上提供更好的韧性和粘合强度。PHENOXY PK™HB 可溶于许多极性非质子溶剂,例如 MEK、环己酮和乙二醇醚。应用
C. L APEYRONIE 1*,MS A LFONSO 1,B. VIALA 2,J.-H. T ORTAI 1 1 格勒诺布尔阿尔卑斯大学、CNRS、CEA/LETI-Minatec、格勒诺布尔 INP、格勒诺布尔阿尔卑斯大学工程与管理学院、LTM、格勒诺布尔 F-38054、法国 2 格勒诺布尔阿尔卑斯大学、CEA、LETI、38000 格勒诺布尔、法国