Xue Liu 1 , Jiajie Pei 1, 2 , Zehua Hu 1 , Weijie Zhao 1 , Sheng Liu 1 , Mohamed-Raouf Amara 1 , Kenji Watanabe 3 , Takashi Taniguchi 4 , Han Zhang 2 , Qihua Xiong 1, 5 * 1 Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological大学,新加坡637371,新加坡。2 2, 伊巴拉基305-0044,日本5低维量子物理学的国家主要实验室和北京北京大学的物理系,中国摘要:二维(2D)van der waals异质结构因其出现的电气和光学性质而引起了巨大的研究兴趣。 此类设备中对层间耦合的全面理解和有效的控制对于实现其功能以及提高其性能至关重要。 在这里,我们通过改变由石墨烯,六边形硝化硼和二硫化钨的不同堆叠层改变了2D材料之间的层间电荷转移。 在可见光的兴奋下,尽管被氮化硼隔开了,但二硫化石和钨二硫化物表现出清晰的掺杂水平的调制,即,石墨烯中费米水平的变化是120 MEV,以及WS 2中的净电子积累。2, 伊巴拉基305-0044,日本5低维量子物理学的国家主要实验室和北京北京大学的物理系,中国摘要:二维(2D)van der waals异质结构因其出现的电气和光学性质而引起了巨大的研究兴趣。 此类设备中对层间耦合的全面理解和有效的控制对于实现其功能以及提高其性能至关重要。 在这里,我们通过改变由石墨烯,六边形硝化硼和二硫化钨的不同堆叠层改变了2D材料之间的层间电荷转移。 在可见光的兴奋下,尽管被氮化硼隔开了,但二硫化石和钨二硫化物表现出清晰的掺杂水平的调制,即,石墨烯中费米水平的变化是120 MEV,以及WS 2中的净电子积累。伊巴拉基305-0044,日本5低维量子物理学的国家主要实验室和北京北京大学的物理系,中国摘要:二维(2D)van der waals异质结构因其出现的电气和光学性质而引起了巨大的研究兴趣。 此类设备中对层间耦合的全面理解和有效的控制对于实现其功能以及提高其性能至关重要。 在这里,我们通过改变由石墨烯,六边形硝化硼和二硫化钨的不同堆叠层改变了2D材料之间的层间电荷转移。 在可见光的兴奋下,尽管被氮化硼隔开了,但二硫化石和钨二硫化物表现出清晰的掺杂水平的调制,即,石墨烯中费米水平的变化是120 MEV,以及WS 2中的净电子积累。伊巴拉基305-0044,日本5低维量子物理学的国家主要实验室和北京北京大学的物理系,中国摘要:二维(2D)van der waals异质结构因其出现的电气和光学性质而引起了巨大的研究兴趣。此类设备中对层间耦合的全面理解和有效的控制对于实现其功能以及提高其性能至关重要。在这里,我们通过改变由石墨烯,六边形硝化硼和二硫化钨的不同堆叠层改变了2D材料之间的层间电荷转移。在可见光的兴奋下,尽管被氮化硼隔开了,但二硫化石和钨二硫化物表现出清晰的掺杂水平的调制,即,石墨烯中费米水平的变化是120 MEV,以及WS 2中的净电子积累。通过使用微拉曼和光致发光光谱的组合,我们证明了调制起源于同时操纵电荷和/或在每个两个相邻层之间的能量转移。关键字:2D材料,范德华异质结构,拉曼和光致发光光谱,层间电荷和能量传递,带工程
六角硼硝酸盐(H-BN)由于其令人难以置信的电气,热和机械性能而近期引起了很多关注。其化学成分导致其化学惰性和无毒性,这使其与石墨材料不同(1)。过去,H-BN由于其摩擦学特性,即摩擦,润滑,表面相互作用。例如,这些特性已被理论上有效为航天器上的涂层,因为其在高温下保持其结构的能力(2,3)。对H-BN的分析较小,因为六角硼氮化硼纳米片(BNNS)也很感兴趣。正如已经发现石墨材料具有广泛的应用程序一样,BNN也是如此。bnns可以用作癌症药物递送的一种方法,因为它比基于石墨烯的材料更具生物相容性和毒性,但保留了许多相同的特性(4)。还发现了在量子信息中使用H-BN的动机,将量子通信科学用作“单光子发射器”(5)。我们对H-BN的特定兴趣源于其在高温下用作紫外光探测器的理论上的使用(6)。
z/n。在与己贡氮化硼(HBN)排列的菱形堆积石墨烯中,我们发现参数状态QAHC-2和QAHC-3的能量低于传统的QAHC-1,在总填充总填充ν= 1每个moir´e单位单元。这些状态都具有Chern数量C TOT = 1,并且与实验中观察到的QAH效应相结合。较大的QAHC状态具有更好的动能,这是由于Pentalayer石墨烯的独特墨西哥帽子分散剂,可以补偿相互作用能量的损失。与QAHC-1不同,QAHC-2和QAHC-3也打破了Moir'E翻译对称性,并且与Moir´e Band绝缘子明显不同。我们还简要讨论了整数QAHC和分数QAHC态在填充ν= 2/3的竞争此外,我们注意到Moir'E潜力的重要性。较大的Moir´e电势可以大大改变相图,甚至有利于C = 2 Chern频段的QAHC-1 ANSATZ。
铁电纤锌矿具有彻底改变现代微电子学的潜力,因为它们很容易与多种主流半导体平台集成。然而,为了与互补金属氧化物半导体 (CMOS) 电子产品兼容,需要大幅降低反转其极化方向和解锁电子和光学功能所需的电场。为了了解这一过程,我们用扫描透射电子显微镜在原子尺度上观察并量化了代表性铁电纤锌矿 (Al 0.94 B 0.06 N) 的实时极化切换。分析揭示了一种极化反转模型,其中纤锌矿基面中褶皱的铝/氮化硼环逐渐变平并采用瞬态非极性几何结构。独立的第一性原理模拟揭示了通过反极性相的反转过程的细节和能量。该模型和局部机械理解是这种新兴材料类别的属性工程工作的关键初始步骤。B
摘要:表征2D材料中的缺陷,例如沉积化学蒸气(CVD)的裂纹 - 生长的六边形氮化硼(HBN)对于评估材料质量和可靠性至关重要。传统的特征方法通常是耗时且主观的,可以受到HBN的光学对比度有限的阻碍。为了解决这个问题,我们使用Matlab的Image Labeler并进行了对细致的注释和训练,利用了转移的CVD生长的HBN膜中的Yolov8n深学习模型来进行自动裂纹检测。该模型展示了有希望的裂纹检测能力,准确地识别了不同大小和复杂性的裂纹,并且损失曲线分析揭示了渐进式学习。然而,精确和回忆之间的权衡突出了需要进一步完善的必要性,尤其是在区分多层HBN地区的精细裂缝方面。这项研究证明了基于ML的方法简化2D材料表征并加速其集成到高级设备中的潜力。
二维材料中的光学活性缺陷,例如六方氮化硼 (hBN) 和过渡金属二硫属化物 (TMD),是一类极具吸引力的单光子发射体,具有高亮度、室温操作、发射体阵列的位点特定工程以及可通过外部应变和电场进行调谐的特性。在这项工作中,我们展示了一种新方法,可在无背景的氮化硅微环谐振器中精确对准和嵌入 hBN 和 TMD。通过 Purcell 效应,高纯度 hBN 发射体在室温下表现出高达 46% 的腔增强光谱耦合效率,这几乎超出了无腔波导发射体耦合的理论极限和之前的演示。该设备采用与 CMOS 兼容的工艺制造,不会降低二维材料的光学性能,且对热退火具有稳定性,并且在单模波导内量子发射器的定位精度达到 100 纳米,为具有按需单光子源的可扩展量子光子芯片开辟了道路。
二维材料,如石墨烯、六方氮化硼 (hBN) 和过渡金属二硫属化物 (TMD),本质上具有柔韧性,可以承受非常大的应变(> 10% 的晶格变形),并且它们的光电特性对施加的应力表现出清晰而独特的响应。因此,它们在研究机械变形对固态系统的影响以及在创新设备中利用这些影响方面具有独特的优势。例如,二维材料可以轻松地将纳米级机械变形转换成清晰可检测的电信号,从而能够制造高性能传感器;然而,同样容易的是,外部应力可以用作“旋钮”来动态控制二维材料的性质,从而实现应变可调、完全可重构的设备。本文回顾了在纳米级诱导和表征二维材料机械变形的主要方法。在介绍有关这些独特系统的机械、弹性和粘合性能的最新成果之后,简要讨论了它们最有前景的应用之一:实现基于振动二维膜的纳米机电系统,该系统有可能在高频率(> 100 MHz)和大动态范围内运行。
二维材料,如石墨烯、六方氮化硼 (hBN) 和过渡金属二硫属化物 (TMD),本质上具有柔韧性,可以承受非常大的应变(> 10% 的晶格变形),并且它们的光电特性对施加的应力表现出清晰而独特的响应。因此,它们在研究机械变形对固态系统的影响以及在创新设备中利用这些影响方面具有独特的优势。例如,二维材料可以轻松地将纳米级机械变形转换成清晰可检测的电信号,从而能够制造高性能传感器;然而,同样容易的是,外部应力可以用作“旋钮”来动态控制二维材料的性质,从而实现应变可调、完全可重构的设备。本文回顾了在纳米级诱导和表征二维材料机械变形的主要方法。在介绍有关这些独特系统的机械、弹性和粘合性能的最新成果之后,简要讨论了它们最有前景的应用之一:实现基于振动二维膜的纳米机电系统,该系统有可能在高频率(> 100 MHz)和大动态范围内运行。
摘要:自 2004 年分离出原子级薄石墨烯片以来,二维 (2D) 材料因其特殊和多功能的特性而引起了人们的极大兴趣。然而,随着 2D 材料的生产和使用日益增多,有必要彻底评估其对人类健康和环境的潜在影响。此外,需要统一的测试协议来评估 2D 材料的安全性。由欧盟委员会资助的石墨烯旗舰项目 (2013-2023) 致力于识别石墨烯基材料以及新兴 2D 材料(包括过渡金属二硫属化物、六方氮化硼等)的潜在危害。此外,人们还探索了所谓的绿色化学方法,以实现安全和可持续地生产和使用这一迷人的纳米材料家族的目标。本综述简要概述了石墨烯旗舰项目的发现和经验教训。关键词:二维纳米材料、碳材料、暴露、环境、毒性、危害、安全设计、生物降解性、测试指南
单层石墨烯(SLG)的唯一光电特性非常适合从X射线到微波的广泛频率开发光子设备。在Terahertz(THZ)频率范围(0.1-10 THz)中,这导致了具有最先进性能的光学调节器,非线性源和光电探测器的发展。关键挑战是以可扩展的方式将基于SLG的活动元素与先前存在的技术平台集成在一起,同时保持绩效水平不受干扰。在这里,我们报告了由大区域SLG制成的室温THZ探测器,由化学蒸气沉积(CVD)生长,并集成在天线偶联的场效应晶体管中。我们有选择地激活光电电检测动力学,并在Al 2 O 3上采用不同的SLG的不同介电配置,而有无大区域CVD六角形氮化硼氮化物限值来研究其对SLG热电学适当的影响基础光照相的影响。使用这些可扩展体系结构,响应时间5 ns和噪声等效功率(NEP)1 NW Hz 1/ div>