量子密钥分发 (QKD) 被认为是各种潜在量子技术中最直接、最广泛实施的应用。QKD 通过使用光子作为信息载体,实现远距离用户之间共享密钥。目前正在进行的努力是以稳健、紧凑的方式在实践中实现这些协议,以便在各种现实场景中有效部署。固态材料中的单光子源 (SPS) 是这方面的主要候选者。本文展示了一种室温、离散变量量子密钥分发系统,该系统使用六方氮化硼中的明亮单光子源在自由空间中运行。采用易于互换的光子源系统,生成长度为一百万位的密钥和大约 70000 位的密钥,量子比特错误率为 6%,𝜺 安全性为 10-10。这项研究展示了利用 hBN 缺陷实现的第一个概念验证有限密钥 BB84 QKD 系统。
Shamsiya Shams 和 B. Bindhu * 摘要 二维氮化硼在能源转换和存储的发展趋势中具有广泛的应用。能源行业因其多功能性而迅速发展,利用了新技术发展的各种应用。更加注重二维氮化硼扩展的机械强度和柔韧性,这种材料优先用于柔性太阳能电池的开发,这反过来又使得构建轻量级和便携式能源解决方案成为可能。二维氮化硼在超级电容器和电池中的储能应用是有趣的结构候选。由于其巨大的表面积,它能够容纳客体离子,因此它有潜力用作电极材料,加速储能设备的循环和速率。此外,其化学稳定性对电池和超级电容器的寿命有积极影响,因为它可以减少电极的氧化或结垢,从而确保更长的使用寿命。此外,二维氮化硼膜具有出色的离子选择性和渗透性,是燃料和电解质电化学合成的有希望的候选材料。本文详细介绍了二维氮化硼,它是一种用于增强转化和储能技术的多功能材料,使其成为该领域的杰出材料,这将在未来带来更高效、更耐用、更环保的能源解决方案。
振幅[3,4]光散射的方向性[5,6]自旋[7,8]和轨道角动量[9,10],而不受金属基方法固有材料损耗的限制。特别是,由近场增强驱动的应用,如生物分子传感,依赖于高共振品质因数(Q)(定义为共振波长除以线宽),因此需要高的电磁近场强度来实现最大样本灵敏度。[11,12]从米氏理论等中得知,共振品质因数和共振器折射率[13]之间的固有相关性,因此推动了基于高折射率材料体系(如硅[14,15]锗[16,17]或磷化镓)的全电介质纳米光子学的发展。 [18,19] 尽管这些材料在近红外 (NIR) 和红外 (IR) 光谱区域具有出色的高 Q 共振特性,但由于它们的带隙能量处于中间水平,因此在整个可见光谱范围内都伴随着较高的材料固有带间吸收损耗。由于这些基本的材料限制,在整个可见光谱范围内都缺乏无损高折射率材料。[20–23] 特别是,对于可见波长范围,存在大带隙和无损材料的竞争
在电子设备结构中引入层状二维 (2D) 材料是提升电子设备性能和提供附加功能的一种有趣策略。例如,石墨烯(导电性)已用作电容器 [ 1 ] 和电池 [ 2 ] 中的电极,而过渡金属二硫属化物 (TMD),例如 MoS 2 、 WS 2 和 WSe 2(半导体性),常用作场效应晶体管 (FET) 和光电探测器 [ 3 – 5 ] 中的沟道。六方氮化硼 (h-BN) 是由 B 和 N 原子排列成 sp 2 六方晶格的二维层状材料,其带隙为 5.9 eV [ 6 ]。因此,h-BN 是一种电绝缘体,并且在许多不同的应用中非常有用。到目前为止,h-BN 已被证明是一种非常可靠的 FET 栅极电介质,并且能够比高 k 电介质更好地抵抗电应力 [7,8],因为
六方氮化硼 (hBN) 已成为一种有前途的超薄单光子发射器 (SPE) 主体,在室温下具有良好的量子特性,使其成为集成量子光子网络的理想元素。在这些应用中使用这些 SPE 的一个主要挑战是它们的量子效率低。最近的研究报告称,在嵌入金属纳米腔内的多层 hBN 薄片中集成一组发射器(例如硼空位缺陷)时,量子效率可提高两个数量级。然而,这些实验尚未扩展到 SPE,主要集中在多光子效应上。在这里,研究了由在超薄 hBN 薄片中创建的 SPE 与等离子体银纳米立方体 (SNC) 耦合组成的混合纳米光子结构的量子单光子特性。作者展示了 SPE 特性 200% 的等离子体增强,表现为 SPE 荧光的强烈增加。这种增强可以通过严格的数值模拟来解释,其中 hBN 薄片与引起等离子体效应的 SNC 直接接触。在室温下使用紧凑的混合纳米光子平台获得的强而快速的单光子发射对于量子光通信和计算中的各种新兴应用非常有用。
§ 金刚石、碳化硅(SiC)和六方氮化硼(hBN)拥有各种光学可及的自旋活性量子中心 § 在环境条件下具有优异的相干特性(“室温下的量子比特”) § 由于塞曼分裂,缺陷的能级结构对磁场高度敏感
热能存储引起了广泛关注,相变材料 (PCM) 因其有益的物理和化学特性而被广泛使用。虽然氮化物基盐 PCM 通常用于热能存储,但其潜热存储能力仍然有限。这项研究通过加入单层氮化硼来增强氮化物基盐用于热能存储的性能,从而提高热导率和潜热存储能力。Sn₃N₂-LiNO₃-NaCl/单层氮化硼的新型混合物具有高比热容、高潜热值和低相变温度的特点,使其成为热能存储的绝佳候选材料。在 PCM 中添加单层氮化硼可显著提高热导率,将其从 1.468 W/m·K 提高到 5.543 W/m·K。值得注意的是,这些氮化物基三元盐不会相互发生化学反应;它们的相互作用纯粹通过混合来改善热性能。该新型共混物还表现出了良好的热稳定性,在600℃时分解率仅为0.5%,熔化温度为150℃,凝固温度为130℃。三元盐的比热容达到最大值3.5 J/g·℃,表明热流速率更高,充电和放电速率也更高。复合PCM(CPCM)的储热能力在600℃时为600 kJ/kg,这些PCM的组合延长了储热时间。三元盐表现出优异的热稳定性,在100次循环中保持性能而质量没有显著减少。此外,三元盐向单层孔隙中的扩散进一步增强了其有效性。使用基于Anaconda的Jupyter Notebook和Python进行模拟分析。
5 帕多瓦大学化学科学系,Via Marzolo 1, 35131 帕多瓦,意大利 * 通讯作者:plinio@uniss.it 关键词:六方氮化硼,二维材料,光致发光 摘要 基于六方氮化硼纳米片(h-BNN)的功能光电应用的开发依赖于控制结构缺陷。特别是,已经观察到荧光发射取决于空位和取代缺陷。在目前的研究中,通过超声辅助液相剥离块体对应物获得了少层 h-BNN。制备的样品在可见光范围内表现出微弱的荧光发射,中心在 400nm 左右。通过在不同温度下在空气中氧化引入了定制缺陷。已经观察到氧化 h-BNN 的荧光发射显著增加,在 300°C 下处理的样品的发射强度最大。温度进一步升高(>300°C)会导致荧光猝灭。
人们使用各种各样的药物输送载体来转移药物,但纳米粒子的引入带来了一场巨大的革命,为抗癌药物的靶向输送开辟了新天地。这些纳米粒子被用作有效的药物输送载体,它们具有大的表面积和小的尺寸,可以轻松穿透细胞屏障。3,4 人们通过计算和实验研究了一系列纳米结构,包括碳纳米管、富勒烯和氮化硼富勒烯,以研究它们的药物输送能力。这些纳米结构的尺寸小,可以很容易地与药物分子结合。5 这些纳米结构的表面特性和无毒性质可提供靶向输送而不会影响健康细胞,因此它们被用作输送载体。在纳米技术的延伸领域,氮化硼 (BN) 纳米结构因其出色的物理化学特性而引起了研究人员的兴趣,这使得它们非常适合用作药物输送载体。 6 BN 的无机结构具有较高的化学和热稳定性、宽带隙和良好的机械强度,使其成为用于药物输送的理想选择。7,8