水深、地形和海岸线的整合对许多沿海应用有益。这种地理空间整合始于将所有数据集转换为通用垂直基准面后,将水深和地形数据混合到数字高程模型 (DEM)。垂直基准面转换工具 VDatum 已经开发出来,允许在 27 种不同的正高、3-D/椭圆体和潮汐基准面之间进行转换。VDatum 中潮汐基准面的地理分布是使用经过校准的水动力潮汐模型生成的。初步示范项目在坦帕湾地区开展,其中将 NOAA(美国国家海洋和大气管理局)的水深数据与 USGS(美国地质调查局)的地形数据进行混合。其中一个目标是解决 NOAA 的航海图和 USGS 的地图产品之间的不一致问题,尤其是在海岸线方面。演示了一种从覆盖潮间带的高分辨率激光雷达高程数据(将这些数据转换为 MHW 基准面,其中零轮廓为 MHW 海岸线)确定一致定义的平均高水位 (MHW) 海岸线的方法。VDatum 还将在以下方面发挥关键作用:(1) 实施无缝高分辨率国家水深测量数据库,该数据库将支持 ENC(电子航海图)的制作和沿海区管理人员基于 GIS 的活动;(2
本报告旨在评估市场上现有的测深 LiDAR(光探测和测距)系统,以便为爱尔兰政府采购一套系统。爱尔兰国家海底调查局(INSS)绘制了超过 468,500 平方公里的海床;大多数调查区域位于爱尔兰领海海床的外缘。INSS 的后续项目是 INFOMAR:综合测绘 为了爱尔兰海洋资源的可持续发展,这是一项为期 20 年的调查计划,于 2006 年启动。INFOMAR 提议的海床测绘将包括我们具有商业价值的近海区域的测绘,因此也许现在最重要的测绘工作迫在眉睫。这种近海测绘的大部分区域(可达 7000 平方公里)都可以使用 LiDAR 有效地绘制;LiDAR 是一种安装在轻型飞机上的测深光探测和测距仪器,因此可以快速高效地对大面积区域进行测量。爱尔兰海洋研究所和地质调查局将利用 INSS 和随后的 INFOMAR 获取的数据,通过提高水深测量的质量和准确性,将爱尔兰的海图带入 21 世纪,从而履行爱尔兰在 SOLAS 下的义务。爱尔兰是《国际海上人命安全公约》的签署国。2002 年 7 月生效的新修正案要求爱尔兰“安排收集和汇编水文数据并发布,diss
摘要:环境保护的主要任务之一是监测海岸因气候变化和人为压力而产生的负面影响。遥感技术经常用于影响评估研究。地形和水深测量程序被视为单独的测量方法,而将沿海区域分析与水下影响相结合的方法很少用于岩土分析。本研究对用于沿海监测的水深测量机载系统进行了评估,同时考虑了环境条件并与其他监测方法进行了比较。测试是在波罗的海的一个区域进行的,尽管监测成功,但沿海退化仍在继续。该技术能够确定沿海悬崖侵蚀的威胁(基于岩土分析)。据报道,浅水深度对水深光探测和测距 (LiDAR) 来说是一个挑战,因为很难将表面、水柱和底部反射相互分离。通过描述所使用的分类方法克服了这一挑战,即最适合点云处理的 CANUPO 分类方法。本研究提出了一种识别自然灾害的创新方法,即结合沿海特征与水下因素的分析。本文的主要目标是评估在波罗的海使用水深扫描来确定导致海岸侵蚀的因素的适用性。此外,还进行了岩土工程分析,考虑到水下的几何地面变化。这是第一项使用沿海监测方法的研究,将岩土工程计算与遥感数据相结合。这项跨学科的科学研究可以提高对环境过程的认识。
精确监测河床、水道、湖泊和水坝,即空中激光(LiDAR)测深。它提供了同时确定浅水系统深度和其所属可淹没地区的地形的机会,所有这些都具有无与伦比的一致性和细节水平。报告中对使用两种不同的激光扫描仪(RIEGL LMS-Q680i 和 RIEGL VQ-820-G 地形水文机载激光扫描仪)扫描奥古斯塔河部分获得的数据进行了重要的比较分析,并提出了一些结论和建议,用于在实践中使用所研究的技术。强调需要研究单位、企业和社会管理领域之间密切合作和伙伴关系,以充分和多方面利用这些现代传感器的巨大潜力,优化将数据转换为信息系统的方法,并改善水资源的利用和紧急情况和灾难中的人口保护。 РЕЗЮМЕ
自 S-44 第 4 版 (IHO, 1998) 发布以来,在数据收集和处理过程中对深度测量不确定性进行建模已成为一种常见做法。水文办公室也试图对传统水深测量的不确定性进行建模,以确定其是否适用于各种用途。可以通过各种网格化技术将额外的不确定性引入代表性水深测量模型中,这些技术在测量之间插入深度。本文回顾了测量不确定性的来源,研究了估计传统数据集中不确定性的方法以及通过网格化引入水深测量 (数字高程/深度) 模型 (DEM/DDM) 的不确定性。可以从水深测量/DEM/DDM 不确定性信息中受益的应用包括桥梁风险管理和海啸淹没建模。关键词:水深测量、不确定性、数字高程模型
观察表明,浅水海底地形通常具有由各种海洋学和地质过程产生的带限方向谱。这种定向底部特征对三维低频声传播有明显的影响。使用理想化的直海底波纹模型进行的分析研究表明,声能可以在相邻波纹之间部分传导,这种传导将影响浅水中的声传播。在我们的工作中,我们还研究了理想化的弯曲海底波纹引起的传导和折射。先前的研究表明,非线性内波也可以产生声波管道。使用我们的理想模型对这两种不同的管道进行了比较分析。研究了内部波和水深测量对内部波前和底部波纹的各种相对方向的综合影响。对三维声音在真实水深测量和内部波波动中的传播进行了数值模拟。总之,在研究浅水中的三维声传播时,需要考虑水柱波动和水深测量变化。
观察表明,浅水海底地形通常具有由各种海洋学和地质过程产生的带限方向谱。这种定向底部特征对三维低频声传播有明显的影响。使用理想化的直海底波纹模型进行的分析研究表明,声能可以在相邻波纹之间部分传导,这种传导将影响浅水中的声传播。在我们的工作中,我们还研究了理想化的弯曲海底波纹引起的传导和折射。先前的研究表明,非线性内波也可以产生声波管道。使用我们的理想模型对这两种不同的管道进行了比较分析。研究了内部波和水深测量对内部波前和底部波纹的各种相对方向的综合影响。对三维声音在真实水深测量和内部波波动中的传播进行了数值模拟。总之,在研究浅水中的三维声传播时,需要考虑水柱波动和水深测量变化。
根据 IHO 标准,SeapiX 水深测量与外部高质量运动参考单元相结合时非常适用。水下栖息地和地质纹理可以从海底的沿轨反向散射中得出。这两个阵列的电子可控能力可实现多种应用,包括渔业研究、生物量监测、气体泄漏监测、火山脱气……