自由生活的变形虫(FLA)在自然界和人造环境中很普遍,它们可以通过形成囊肿在恶劣的条件下生存。研究发现,一些FLA物种能够显示出对人类健康的致病性,导致中枢神经系统,眼睛等严重感染。回收率极低。因此,必须在环境栖息地建立FLA的监视框架。许多研究调查了独立FLA的风险,但FLA与周围微生物之间的相互作用确定了生态系统中的微生物群落,并在很大程度上影响了公共卫生。在这里,我们系统地讨论了FLA和不同类型的微生物之间的相互作用,以及对环境中FLA的行为和健康风险的相应影响。特别是细菌,病毒和真核生物可以与FLA相互作用,并引起对FLA感染性的增强或抑制的影响,以及微生物社区的变化。因此,考虑到环境中FLA和其他微生物的共存对于降低环境健康风险至关重要。
该活动将汇集领先的专家,以深入研究鱼类疫苗接种和有关虾疫苗接种的新发展,这是一种重要的生物安全策略。当前的知识将进行审查,检查障碍并发现疫苗开发的机会。
科学技术政策办公室(OSTP)是由1976年的《国家科学与技术政策,组织和优先权法》建立的,目的是为总统执行办公室内的总统和其他人提供有关经济,国家安全,国土安全,国土安全,健康,外交关系,环境以及技术恢复和资源的建议。OSTP领导机构间科学和技术政策协调工作,协助管理和预算办公室对预算的联邦研究和发展进行年度审查和分析,并作为总统在联邦政府的主要政策,计划和计划方面的科学和技术分析和判断的来源。更多信息可从http://www.whitehouse.gov/ostp获得。
Original Article Effectiveness of aquatic motor intervention on motor skills and adjusting to aquatic environments among toddlers with visual impairment: A pilot study MICHAL NISSIM* 1 , KENNETH KOSLOWE 2 , YAEL RAUCH PORRE 3 , EINAT ALTER 4 , RUTH TIROSH 5 1 Special Education Department, The David Yellin Academic College of Education, ISRAEL 2,3,4 Eliya-Association for Blind and Visually Impaired Children,以色列5水疗,以色列艾林医院在线发布:2024年5月31日(接受出版于2024年5月15日,doi:10.7752:10.7752/jpes.2024.05119方法:在这项试验研究中,将8至36个月的视觉障碍的三十三名幼儿随机分为两组:干预组同时接受了30分钟的水上运动干预和30分钟的物理疗法课程,每周一次,每周一次,持续12周,对照组每周仅接受30分钟的物理治疗,为期12周。使用了Peabody Developmental Motor Scales – 2nd Edition(PDMS-2),水取向测试ALYN1(WOTA1)和前视觉评估(PREVIAS)。目的:本研究旨在评估物理治疗和水生运动干预对视觉障碍的幼儿运动技能,调整和水功能的影响。另一个目标是研究运动技能,视觉功能以及视觉障碍的幼儿中水中的调整和功能之间的关系。结果:统计分析显示,运动技能和对象操纵的时间和研究组之间存在显着相互作用。PDMS-2总分[F = 5.2,P <0.05]和对象操作[F = 5.89,P <0.01]与对照组相比,干预组的时间显着改善。此外,结果表明,视觉障碍的幼儿中水的调整和功能有了显着改善。分析显示干预组[t(17)= -8.62,p <0.01]发生了重大变化。但是,PDMS-2总分(M = 13.54,SD = 9.48)的变化与WOTA1分数变化(M = 7.05,SD = 3.47)[R(16)= 0.68,P> 0.05]之间没有发现显着相关性。结论:这项研究强调了物理疗法和水生运动干预在增强运动技能并促进对视觉障碍的幼儿的适应水环境方面的有效性。这些发现主张将这种干预措施整合到早期干预计划中,以更好地支持视觉障碍的幼儿的发展需求。关键词:早期干预;水疗;婴儿;视觉残障引言视觉障碍是幼儿中普遍的感觉障碍(Solebo&Rahi,2014年),这是由各种病因引起的,包括遗传状况,产前或围产期感染,早产,创伤和环境影响(Yahalom等人(Yahalom等人,20222))。视觉障碍对幼儿发展的影响是累积的(Sonksen&Dale,2002)。扭曲的视觉信息破坏了信息处理和解释,导致发展延迟。先前的研究强调,与典型的同龄人相比,视觉障碍的儿童在实现发展里程碑方面的滞后滞后(Alon等,2010),具有各种运动技能的特定延迟(Elisa等,2002; Hallemans等,2011)。在六个月的大约六个月大的时候,幼儿通常开始表现出自愿运动模式和总体运动技能,从而积极探索他们的环境。但是,具有视觉障碍的幼儿可能会遇到延误运动技能的延迟,包括爬行,站立和独立步行。他们也可能会面临精细运动技能的挑战,例如伸出手和抓住小物体,这些物体需要眼镜(Braddick&Atkinson,2013; Celano et al。,2016; Prechtl等,2001)。考虑到生命的头几年的高神经塑性,应尽早开始对视觉功能和运动技能的干预(Yin等,2019)。研究表明,通过早期干预,视力障碍的儿童可以达到与普通人群相当的功能水平(Saklofske等,2002)。神经科学的研究支持了早期干预对具有视觉障碍的幼儿发展的重要性。在关键时期,视觉皮层的发展受视觉和运动体验的影响,这种神经灵活性受到视觉刺激和运动活动的影响。然而,自出生以来的视觉经历有限,会阻碍视觉皮层中神经元的成熟(Fazzi等,2005)。尽管对早期干预对残疾幼儿的重要性得到了广泛认可(Novak&Morgan,2019; World Health
该模块探索了河流生物多样性,这是一些生活在河流中的常见动物以及维持它们的基本食物链的说明。构成食物链基础的宏观围栏物具有对水污染的敏感性不同。随后污染敏感或耐受物种的丰度或不存在用作水质的生物探测者。此过程称为质量等级或Q-System。学生将被介绍给该系统,并探讨某些物种(例如大西洋鲑鱼)所面临的挑战。最后一课将探讨非本地,侵入性外星物种对局部生物多样性的影响。
通过研究什么是生物多样性以及为什么我们必须保护它,可以探索淡水和生物多样性主题。您将进行研究以发现河流和湖泊的标志性动物(例如鲑鱼,鳗鱼,鳟鱼,五月蝇,翠鸟,北斗星,苍鹭,水獭)。了解这些动物的生活方式(它们的栖息地要求),它们如何迁移以及为什么它们对我们的环境很重要,将使您深入了解不同物种的相互依存关系。您会发现,生活在河中的无脊椎动物可以告诉您很多有关水质的信息。这是因为有些人对污染非常敏感,并且会因污染而被杀死。您将了解质量评级或“ Q系统” - 一种基于河流中存在的无脊椎动物的方法来确定水质。也引入了基本的公民科学方法论。
“蓝色碳”生态系统(BCE),尤其是红树林沼泽,通常因其缓解潜力而受到认可,并且在这方面比内陆淡水生态系统受到了更大的关注(IPCC 2014)。因此,在本章中,我们关注淡水生态系统(湿地,湖泊,水库和河流)以及淡水依赖的沿海和海洋系统。本章采用“问题原因”方法来解决基于淡水生态系统的气候变化的缓解。它在什么情况下讨论了长期碳汇(即淡水生态系统)成为碳源,以及如何消除或最小化这种转变,以继续从隔离碳的潜力中受益。这些缓解措施具有实质性的共同利益,并与可持续发展目标保持一致,但是它们的采用可能需要根据当地和区域背景来量身定制。
了解地球系统不同隔室中大气人为碳(C)的重新分配是地球科学的优先事项。C周期的全球数值建模是理解大气,大陆和海洋之间C循环的基本工具之一。然而,地球系统模型和其他大规模模型仍然缺乏对沿着土地到海水连续体(LOAC)在调节陆地生态系统和海洋之间进行调节有机碳(OC)交换中的作用的全面描述。水生生态系统能够在其积累的沉积物中隔离有机碳(即有机碳埋葬(OCB))是了解LOAC在全球C周期中的作用的基本过程。然而,将此过程纳入C周期的大规模数值模型仍处于早期阶段。在这里,我们回顾了沿LOAC涉及的生态系统过程以及不同作者使用的术语,OCB测量方法,大规模C模型的结构,文献中可用的OCB速率以及其他用于建模目的的数据源。我们的目标是查明将LOAC沿LOAC纳入地球系统模型和其他大规模应用的障碍和潜在解决方案。我们确定在与LOAC沿LOAC沿着生态系统工作的不同科学学科中缺乏语言协调,并提出了有关OCB的受控词汇,以协助解决这一挑战。我们已经编制了沿LOAC(湖泊,水库,洪泛区和沿海生态系统)的生态系统的全局数据集,其中包括1163 OCB速率值,对应于713个单个生态系统,并在全球地理和生态系统中表现出强烈的偏见。我们还表明,几乎没有现有的大规模C模型沿LOAC融合OCB,尽管其中一些已经迈出了在全球范围内包含此过程的第一步。最后,我们分析了帮助铺平道路的挑战和潜在解决方案,以在C周期的大规模模型中沿LOAC整合OCB,包括在OCB建模研究中对多学科观点的迫切需求汇集了来自生态系统研究与LOAC研究的几个学科的研究人员。
A2007 1 OC DEPO计算为OCB速率X100/OCB EFF A2007 2 OCB EFF =平均值(1.8,2.3)A2007 3 OCB EFF =平均值(1.2,1.6)A2007 4 OCB EFF =平均值(4.5,6)A2007 5 OCB EFF =平均值OCB EFF = OCB EFF(0.7,1.1.8)A201.8)A2016 1.8/a2016 1.8/ocbe B2013 1 OCB EFF计算为OCB速率X100/OC DEPO D2008 1 OC含量按照作者指示的LOIX100/2.13计算(LOI:点火点的沉积物损失)。LSR计算为沉积的沉积物体积除以湖面积。F2014 1 OCB eff was calculated as OCB rate x100/OC depo G2013 1 OC content calculated as OCB rate x100/mean mass accumulation rates H2013 1 OC content calculated as OCB rate x100/sediment total (erosional+in-lake) mass accumulation rates K2013 1 age was determined by radiocarbon dating, paleomagnetic dating or deglaciation/ isolation of the basin.K2020 1 OCB EFF计算为OCB速率X100/OC DEPO。Molc M -2 y -1中的原始OCB速率值。M2004 1 OCB速率=平均值(31,137)。lsr =平均值(0.32,1.23) - Irion(1984)使用14 C年代计算出平均LSR为0.16 cm年-1。用于计算SED DEPO,OC DEPO和OCB EFF,数据取自Smith-Morrill(1987)。M2004 2 LSR =平均值(0.4,1.34)。OC含量被计算为沉降粒子中OC含量范围的平均值。sed depo和oc depo是所有站点的平均值。OCB EFF计算为OCB速率X100/OC DEPO。O2012 1 LSR =平均值(0.2,0.4)。OCB速率计算为全局OCB速率除以湖面面积。O2014 1 OCB速率=平均值(12,62)
IGB是德国最大的淡水研究中心之一。 它也是该领域最古老的机构之一。 前身机构的根源可以追溯到19世纪末。 今天,IGB的科学涵盖了广泛的学科。 一起,我们试图提高对塑造淡水生态系统以及它们如何嵌入陆地和社会环境中的基本过程的机械和定量理解。 我们研究了水生生物所经历的生态和进化动力学,以及生物多样性变化的驱动因素和含义。 我们在淡水提供的生态系统服务中开发了整体见解,从水安全和自然洪水保护到渔业以及对人类健康的影响。IGB是德国最大的淡水研究中心之一。它也是该领域最古老的机构之一。前身机构的根源可以追溯到19世纪末。今天,IGB的科学涵盖了广泛的学科。 一起,我们试图提高对塑造淡水生态系统以及它们如何嵌入陆地和社会环境中的基本过程的机械和定量理解。 我们研究了水生生物所经历的生态和进化动力学,以及生物多样性变化的驱动因素和含义。 我们在淡水提供的生态系统服务中开发了整体见解,从水安全和自然洪水保护到渔业以及对人类健康的影响。今天,IGB的科学涵盖了广泛的学科。一起,我们试图提高对塑造淡水生态系统以及它们如何嵌入陆地和社会环境中的基本过程的机械和定量理解。我们研究了水生生物所经历的生态和进化动力学,以及生物多样性变化的驱动因素和含义。我们在淡水提供的生态系统服务中开发了整体见解,从水安全和自然洪水保护到渔业以及对人类健康的影响。