大气中二氧化碳(CO 2)的浓度增加,而严格的温室气体(GHG)还原靶标需要开发适用于废物和废水领域的CO 2固相技术。这项研究解决了CO 2排放的减少,并增强了与CO 2富集厌氧消化剂(ADS)相关的沼气产量。通过将CO 2在0、0.3、0.6和0.9 m的分数注射到处理食物浪费或污水污泥的批处理广告中,检查了CO 2富集的益处。每日甲烷(CH 4)的食物废物生产增加了11-16%,在第一个24小时内,污水污泥的污泥为96-138%。据估计,污水污泥的潜在CO 2减少了8-34%,食物浪费的3-11%减少。广告利用其他CO 2的能力被策划了,这可以为CO 2流的现场隔离提供潜在的解决方案,同时增强可再生能源的产生。2014 Elsevier Ltd.保留所有权利。
必须在清洁阶段观察到加热系统。通过解散沉积物,重新等>随后进行修订时,必须出现必须进行修复。具有非常强大的棱镜,可以导致Z便秘。B.热交换器,阀等。来。我们建议安装污泥分离器(例如B. Geno-Therm污泥分离器)。
§最终,污水中的微生物被像氯化一样被消毒杀死。bod:如果一升水中的所有有机物被细菌氧化,将消耗的氧气量;被称为生物氧需求。较高的BOD意味着较高的水污染水平。更高的BOD显示水中有机物水平较高。当废水的BOD大大减少时,废水会发送到沉降箱。在该水箱中,允许细菌的“泡沫”沉淀在底部。该沉积物称为活性污泥。将激活的污泥的一小部分泵回曝气箱中,以作为接种物。污泥的其余部分被发送到称为厌氧污泥消化器的大型储罐。在这个水箱中,厌氧细菌消化了污泥中的细菌和真菌。在此过程中,产生了甲烷,硫化氢和二氧化碳的混合物。这些气体形成沼气。沼气用作能源。二级处理厂的废水通常被释放到天然水体中。水样中BOD的确定:
修订版本:2024 年 3 月 1 日 修订的目的是将临时战略扩大到除了市政生物固体之外的工业污泥。该临时战略不适用于工业液体废物(废水)或混合工业废物,后者通常包括与其他废物混合的工业液体废物或废水,包括工业液体污泥。这些混合废水通常由 WPDES 许可的承包商合并。此外,该临时战略不适用于工业副产品固体。 1.0 执行摘要和目标 本文件旨在为处理威斯康星州废水处理设施 (WWTF) 产生的受全氟和多氟烷基物质 (PFAS) 影响的生物固体和工业污泥的市政和工业废水处理设施 (WWTF) 运营商提供概述和临时战略。威斯康星州自然资源部 (DNR 或部门) 打算通过使用这一临时战略,限制受 PFAS 化合物严重影响的市政生物固体和工业污泥的土地应用。该部门的总体目标是让 WWTF 运营商继续降低生物固体和工业污泥中的 PFAS 浓度。PFAS 来源识别和减少策略对于降低生物固体和工业污泥中的 PFAS 浓度至关重要。DNR 将继续与 WWTF 运营商、美国环境保护署 (EPA) 和其他州分享威斯康星州的努力成果,以支持风险评估工作以及与在州内和全国范围内制定潜在 PFAS 生物固体限制和/或策略相关的努力。实施这一临时战略通过减少 PFAS 浓度源头来降低对人类健康和环境的风险,从而允许在威斯康星州继续土地应用生物固体和工业污泥。2.0 简要背景以下简要概述了威斯康星州的生物固体、工业污泥、PFAS、市政和工业废水中的 PFAS 以及拟议的 PFAS 标准。概述旨在提供基本信息和有关此临时战略文件的问题的高级摘要。 2.1 生物固体 生物固体是营养丰富的有机物质,在 WWTF 处理生活污水时被去除并进一步处理。大多数情况下,生物固体在经过处理和测试后用于土地再利用营养。在生物固体处理过程中,生物固体被稳定化,病原体显著减少,然后用作土壤改良剂、调理剂和/或肥料替代产品。每个 WWTF 的处理过程不同,导致生物固体的形式各异
越来越多的证据表明,人类活动可能导致自然环境中细菌抗菌素耐药性基因 (ARG) 的流行率增加。许多环境研究已经使用下一代测序方法对宏基因组进行测序。然而,这种方法是有限的,因为它不能识别出不同的未表征基因或展示活性。环境宏基因组中的 ARG 表征对于了解耐药性的演变和传播非常重要,因为有几个临床上重要的耐药性基因源自环境物种的例子。本研究采用功能宏基因组方法来检测污水污泥、污泥改良土壤、受季铵化合物 (QAC) 影响的芦苇床沉积物和受影响较小的长期管理草地土壤中编码对超广谱 β -内酰胺类 (ESBLs) 和卡巴培南类药物耐药性的基因。在污水污泥、污泥改良土壤和 QAC 影响土壤中检测到了 ESBL 和碳青霉烯酶基因,它们与临床上重要的 β -内酰胺酶基因具有不同程度的同源性。对侧翼区域进行了测序,以确定潜在的宿主背景和遗传背景。在革兰氏阴性菌中发现了新的 β -内酰胺酶基因,其中一个与插入序列相邻的基因是 Pme1,这表明最近发生了动员事件和/或未来存在转移的可能性。污水污泥和富含季铵化合物 (QAC) 的工业废水似乎会传播和/或选择在长期管理的草地土壤中未检测到的 ESBL 基因。这项工作证实了自然环境是新型和可动员抗性基因的储存库,可能对人类和动物健康构成威胁。
1 沙特阿拉伯阿尔哈吉 11942 萨坦·本·阿卜杜勒阿齐兹王子大学科学与人文学院生物系 2 埃及伊斯梅利亚 8366004 苏伊士运河大学理学院动物学系 3 埃及谢宾·埃尔科姆 6131567 梅努菲亚大学工程学院基础工程科学系 4 埃及谢宾·埃尔科姆 6131567 梅努菲亚大学工程学院先进材料/太阳能与环境可持续性 (AMSEES) 实验室 5 沙特阿拉伯阿尔哈吉 11942 萨坦·本·阿卜杜勒阿齐兹王子大学科学与人文学院数学系; m.abdelgalil@psau.edu.sa 6 苏伊士运河大学理学院数学系,El-Sheik Zayed,伊斯梅利亚 41522,埃及 * 通信地址:e.basiouny@psau.edu.sa (EAH);dr.maha.tony@gmail.com (MAT)
摘要:本研究旨在评估机械分解活性污泥 (WAS) 对全规模厌氧消化的影响,同时考虑获得正能量平衡的可能性。结果表明,分解所用能量密度 (ε L ) 的增加伴随着污泥中有机化合物的释放增加(SCOD 从 ε L = 0 kJ/L 时的 211 ± 125 mg O 2 /L 增加到 ε L = 180 kJ/L 时的 6292 ± 2860 mgO 2 /L)。其中一些是挥发性脂肪酸。分解的 WAS 百分比份额也被记录为影响沼气生产效率的关键参数。该参数值从 25% 增加到 100%,即使在分解所用的 ε L 低得多的情况下(因此从污泥絮凝物中释放的有机化合物量要少得多),也会导致沼气产量增加。在 ε L 30 kJ/L 下对流向发酵罐的整个 WAS 流进行分解,可使沼气产量增加 14.1%。这样的盈余将允许生产大约 360 kWh/d 的净电力。因此,浓缩 WAS 的机械分解可能是一种经济合理的强化厌氧污泥稳定化策略。