Dimitrious Papahadjoupoulos 博士及其团队发现,蜗壳是由带负电荷的磷脂酰丝氨酸与钙相互作用形成的沉淀物。它们用于通过递送肽和抗原来提供疫苗。在纳米蜗壳(一种新型药物递送载体)中,目标药物分子被包裹在多层结构中,包括螺旋形薄片内的固体脂质双层。这种方法使用药物的蜗壳化来克服诸如溶解度差、渗透性和口服生物利用度差等问题。它们保护分子免受 pH、温度和酶等恶劣环境条件的影响。由于其表面和结构上同时具有亲水性和亲脂性形式,因此它可以同时包含亲水性和亲脂性药物分子。药物分子的包封负载能力由蜗壳的物理结构决定,而包封程序决定了形成的复合物的粒度。它可用于口服和全身给药生物活性物质,包括药物、DNA、蛋白质、肽和疫苗抗原。这种方法既可用于全身治疗,也可用于口服治疗,最终可能发展成为药物输送系统。这些因素将鼓励研究人员研究这一新兴的药物输送技术领域。有许多方法可以创建纳米耳蜗,然后可以使用它们来为各种应用施用不同的活性化合物。本文讨论了纳米耳蜗的组成和结构以及这些化合物的给药机制、制造技术、评估、用途和局限性。
isaamlic。以氯仿和等质醇混合物的含量和苯酚体积的一半和一半的量子和一半。.ex:对于5个样品,等分试样2 ml苯酚(1,250 +备用)和等分试样5 ml Isoamlic混合物 +氯仿(200μLISO +4800μL氯仿)。7。等分试样500μL(有时是样品数量)异丙醇酒精。8。移液器250μl苯酚,然后250μl氯仿 +同含同生醇。通过反转摇动。9。摇动30分钟(75速),然后以最高速度离心5分钟。10。小心地卸下上清液(〜400μl),请勿卸下所有内容,以免删除界面。11。与上一步一样,加入400μl氯仿混合物 +同醇酒精,然后通过反转和离心摇动。12。编程4°C的离心机13。卸下上清液,加入500μl异丙醇,通过反转均匀,以13000 g至15分钟的离心液均匀。14。为离心机编程室温。15。删除上清液,请注意不要去除颗粒,加入1毫升的70%乙醇,通过观察颗粒和离心剂在室温下5分钟到13000 g,一两次均质。16。除霜超纯水。17。除去所有酒精,然后将其干燥约15分钟,然后将沉淀物重新降低150μl的超纯水。在冰箱中过夜,第二天将其保持-20°C
八月 (No.8) 现场试验表明不锈钢液体肥料服务具有耐腐蚀性,Thomas F. Shaffer, Jr. ............. 8 通过薄膜持久性试验评估油田腐蚀抑制剂,Eben D. Junkin, Jr., D.R.Fincher ........................ 18 单乙醇胺溶液的抑制作用,J.R. Mottley, D.R.Fincher .................................................................... 20 抑制剂不适用于控制除冰盐引起的汽车腐蚀,J.D.Palmer ......................................... 31 更多关于抑制剂的文章 ........................................................ 33 改进的冷凝水试验加速抑制剂评估,Van Hong ......................................................... 36 油田盐水中亚硫酸盐除氧伴随的溶解度因素,C.C.Templeton, S.S. Rushing, Jane C. Rodgers ............................................................. 42 锅炉酸洗抑制剂评估,L.T.Overstreet ............................................................................. 48 改进的锅炉酸溶液可去除氧化物而不会产生沉淀物,L.G.McLaughlin ........................................... 52 实验室仪器测试压力和速度对抑制盐酸中油田管道腐蚀的影响,W.E.Billings, J.A.Know, David Morris ................................ 58 阳极保护可防止因腐蚀产生的氢气引起的磷酸罐爆炸,Olen L. Riggs, Jr. ................................................................ 63 煤焦油涂层测试:第 5 部分 - 海水中的阴极保护,W.F.Fair, Jr., R.B.Teel ................................. 66 腐蚀检测的无损检测方法,C.E.Lautzenheiser ......................................................... 72 钢或混凝土储罐内部的表面处理,NACE 技术委员会 T-6F 报告 ...................... 9 6 新的化学工艺涂层单个纤维 ................................ 77 用于测量井下腐蚀的环技术 .......................... 80 用于保护喷气式飞机尾翼的石棉毡 ................................ 82
这是一篇关于先进高强度钢 (AHSS) 微观结构-性能关系理解的最新进展的观点论文。这些合金构成一类高强度可成型钢,主要设计为运输部门的板材产品。AHSS 通常具有非常复杂和多层次的微观结构,由铁素体、奥氏体、贝氏体或马氏体基体或这些成分的双相或甚至多相混合物组成,有时还富含沉淀物。这种复杂性使建立可靠的、基于机制的微观结构-性能关系具有挑战性。目前已有许多关于不同类型 AHSS 的优秀研究(例如双相钢、复相钢、相变诱导塑性钢、孪生诱导塑性钢、贝氏体钢、淬火和分配钢、压硬钢等),并且出现了几篇概述,其中讨论了它们的与机械性能和成型相关的工程特征。本文回顾了该领域微观结构和合金设计的最新进展,特别关注了利用复杂位错亚结构、纳米级沉淀模式、变形驱动转变和孪生效应的含锰钢的变形和应变硬化机制。本文还回顾了微合金纳米沉淀硬化钢和压硬化钢的最新发展。除了对其微观结构和性能进行批判性讨论外,还评估了它们的抗氢脆和损伤形成等重要特性。我们还介绍了应用于 AHSS 的先进表征和建模技术的最新进展。最后,讨论了机器学习、全过程模拟和 AHSS 的增材制造等新兴主题。这一观点的目的是找出这些不同类型的先进钢材在变形和损伤机制上的相似之处,并利用这些观察结果促进它们的进一步发展和成熟。
对采用各种增材制造方法制备的样品的结构、织构、转变温度和超弹性能进行了比较。采用激光工程净成型 (LENS) 方法制备的样品的织构与 <001> 构建方向有几度偏差,但成分接近初始粉末成分,从而具有超弹性效应。电子束增材制造 (EBAM) 样品在室温下表现出马氏体结构,这是因为转变温度转移到了更高的范围。这种转变是由于不同的加工条件导致的 Ni 含量较低。然而,EBAM 方法在构建方向上产生了更清晰的 <001> 织构,并且可以在室温以上获得良好的超弹性效应。使用 EDS 和电子衍射分析将尺寸为 0.5-2 毫米的金属间化合物颗粒鉴定为 Ti 2 Ni 相。该相通常形成在晶界处。与 LENS 方法相反,EBAM 制备的样品表现出富含 Ni 的初级颗粒,这是由不同的加工条件引起的,这些加工条件降低了固溶体中的 Ni 含量,从而提高了马氏体转变温度。在 500°C 下老化可使 LENS 和 EBAM 样品的马氏体转变温度转移到更高的范围。这是由于形成了富含 Ni 的连贯沉淀物。在用这两种方法制备并在 500°C 下老化的样品中,主要在 {011} B19' 平面上观察到马氏体 B19' 孪晶的存在。关键词:增材制造;形状记忆合金;NiTi;TEM 研究
该方案是为cri fififaiofcaaɵoOF的总DNA而设计的。所有离心步骤均在微量离心机中在室温(15-25°C)下进行。强烈建议您在Starɵng之前透彻阅读此协议。ezup柱细菌基因组DNA purifififaifaikit被设计为简单,快速和可靠的,只要所有步骤都努力遵循。准备所有组件,并具有在Starɵng之前概述的必要材料。蛋白酶K以现成的实用形式提供,但是该套件中未提供RNase A,如果需要无RNA的DNA,请准备RNAsoluɵon和请参阅协议以添加RNA删除步骤。对于克细菌,应通过酶去除细胞壁(例如溶菌酶),但该酶在试剂盒中未提供。在每次使用之前,检查盐悬浮剂的通用bu ovigesɵoandumence bu q er bd。如有必要,通过将溶液加热56°C来重新安装沉淀物,然后在使用前冷却至室温。ce bu Qu Ques是10 mm Tris-HCl,0.5 mm EDTA,pH 9.0。如果应避免使用EDTA,则可以将水用作最终步骤中的洗脱,但是如果水的pH值小于7.0,则不建议使用。通用PWSoluɵon和通用洗涤液作为浓缩物提供。在使用第一个to to 12 mL异丙醇至18 mL通用pW wsoluɵo22.5 ml乙醇至7.5 ml通用液溶解剂之前,。 将水浴或摇摆板预热至56°C。。将水浴或摇摆板预热至56°C。
1。预期的用途检测和分离革兰氏阴性肠病原体,尤其是人类临床标本和其他标本中的志贺氏菌和沙门氏菌。革兰氏阴性肠病原体(尤其是志贺氏菌和沙门氏菌)的Shalmella shigella琼脂/XLD琼脂。沙门氏菌琼脂/XLD琼脂的功能是支持症状患者的诊断,表明革兰氏阴性肠病原体,尤其是Shigella属和沙门氏菌的病原体潜在感染。沙门氏菌是食物中毒的一些最常见的病因。这些微生物的致病性从一种血清变化到另一种血清,并且在同一亚种中可能会有所不同。一些血清造成了侵入性疾病,但也有一些造成自限性食物中毒的血清疾病。沙门氏菌肠subsp的最孤立的血清。肠道是S. enteritidis,S。Typhimurium,S。Virchow,S。Hadar或S. iftantis。Shigella属包括四种:S。dysenteriae,s。Flexneri,S。Boydii和S. Sonnei。所有物种都是强制性的病原体,并引起细菌痢疾。2。手术沙门氏菌琼脂的原理胆汁盐,孔雀石绿色和柠檬酸钠的存在抑制了除沙门氏菌和志贺氏菌以外的革兰氏阳性微生物和肠杆菌的生长。由于添加乳糖,肠杆菌的分化是可能的。乳糖发酵细菌会产生酸并形成红色菌落,这是由于中性红色的pH指示剂。相反,乳糖非发酵微生物形成无色菌落。柠檬酸铁是硫化氢产生的指标。沙门氏菌产生硫代硫酸盐还原酶,该酶释放出存在于硫代硫酸钠中的硫化物分子。这些分子与氢离子结合,形成H 2 S,与柠檬酸铵反应。这种反应导致形成沉淀物,可见在细菌菌落中心的黑点。XLD琼脂酵母提取物是培养基中养分的来源。脱氧胆酸钠的存在抑制了革兰氏阳性细菌的生长。由于三个指示系统,细菌的分化是可能的: - 乳糖,木糖和蔗糖与苯酚红(这是pH指示剂) - - 盐酸l-赖氨酸盐和苯酚红色, - 硫代硫酸钠和柠檬酸铁硫酸盐。木糖的发酵降低了培养基的pH值,并使其从红色变为黄色。包括沙门氏菌在内的大多数肠道病原体能够发酵木糖,从而导致培养基的酸化。由于志贺氏菌的细菌是乳糖的非发酵,因此不会产生酸,因此会形成红色菌落。赖氨酸允许将沙门氏菌细菌与其他非致病细菌区分开。一旦木糖耗尽,沙门氏菌细菌在脱羧过程中利用L-赖氨酸,这将培养基的pH水平改变为碱。为防止赖氨酸阳性大肠菌群,乳糖和蔗糖的类似pH水平的类似回归,以产生多余的酸。氯化钠保持渗透平衡。柠檬酸铵是硫化氢生产的指标。沙门氏菌产生硫代硫酸盐还原酶,该酶释放出存在于硫代硫酸钠中的硫化物分子。这些分子与氢离子结合形成H 2 s,与柠檬酸铁反应形成沉淀物,可见在细菌菌落中的黑色中心。产生H 2 S的非致病细菌不脱羧L-赖氨酸。因此,它们产生的酸反应阻止了菌落的变化。
有关HPAL项目的最新信息和其他Nickel Matte生产更新到电动汽车电池供应链战略框架协议协议(Nickel Industries Limited)的董事(“公司”)很高兴地宣布,在1月18日,在20月18日,在Electric Dectric Tault供应链策略框架中宣布了对电动汽车电池供应链策略框架宣布的“ DAWN HPAL+ Project”的修订条款。预计在黎明HPAL+项目中的年度产量被称为Excelsior Nickel Cobalt项目(“ ENC”或“项目”),是67,000吨包含的镍等效性和上海等体面的体面,将提供“资本支出”的“资本支出”保证,以使总的建筑和调试成本(以前不超过2.3亿美元)(以前是2.3亿美元)(2.3亿美元)。除了产生混合的氢氧化沉淀物(“ MHP”)之外,该项目还能够生产硫酸盐和镍阴极,将其与当前在印度尼西亚建造的HPAL植物不同,并在整个周期内具有明显的工作灵活性。该项目将受益于现有的印度尼西亚莫洛瓦利工业公园基础设施,并得到公司所确定的现有和未来的稍后资源的支持。该公司预计将在该项目中拥有60-70%的股权,而上海体面的拥有30-40%,但是双方都向引入其他战略合作伙伴开放,这可能会导致这些利益稀释。公司及其合作伙伴上海不错,目前正在共同努力,在公司董事会的最终投资决定(“ FID”)之前完成一项可行性研究,预计建筑有望在2023年12月或2024年3月的季度或任何时候开始,两人都同意,并委托在毕业期间以后不再委托工作。
增材制造金属的机械性能各向异性有几个物理原因。这些原因包括但不限于方向依赖的晶粒和相形态、晶体结构、定向孔隙率/缺陷以及与熔池、分层微观结构相关的异质性。所有这些在大多数增材制造工艺中都很普遍,很难区分它们在机械各向异性中的作用。本综述重点介绍那些试图或合理地隔离其中一个或两个来源的研究,而不是简单地报告机械性能的趋势。这不是一份涵盖所有增材工艺或机械性能的详尽综述;主要评估的是激光粉末床熔合 (LPBF) 金属和拉伸试验结果(模量、屈服强度、极限拉伸强度、伸长率和断裂表面分析)。总之,LPBF 合金的各向异性拉伸性能的主要来源是晶体结构、各向异性微观结构形态、熔合缺陷不足和熔池宏观结构。在各向异性微观结构中,与相和特征(例如晶界 α、沉淀物等)的优先分布相比,拉长的晶粒似乎是次要的。各向异性模量和屈服强度主要由晶体织构引起。晶体塑性模拟支持了这一点。各向异性伸长主要由各向异性微观结构形态、未熔合缺陷和熔池宏观结构引起。支持这一点的证据来自遵循这些特征的断裂表面。熔池宏观结构是最难通过实验从其他各向异性源列表中分离出来的。一组激光工艺参数和合金的发现并不具有指导意义。在将拉伸各向异性的原因与特定来源联系起来之前,必须对上述来源进行表征。需要制定表征和操纵晶体织构、孔隙率、晶粒和相形态以及熔池宏观结构的策略,以更好地理解和控制 AM 金属中的机械各向异性。
修改的方案向导®基因组DNA纯化试剂盒的基因组纯化试剂盒通过离心在10ml颗粒2ml中通过离心在13,000 rpm 1以13,000 rpm 1恢复5分钟,在540 µl EDTA中重悬于540 µl的EDTA中,在50 mm,PH 87 µL,pH 30 µl,在10 mg lysozeme中,lysozym/c在10 mL在13,000 rpm丢弃的13,000 rpm处离心3分钟,将沉淀物恢复为600 µl的“核酸溶液”(来自KIT),并在80°C下混合热量5分钟(允许下一步冷却至下一步)加入3 µL RNase(从KIT中)添加3 µL RNase(从KIT中)在37°C下添加200 µL,并加入200 µL(oft of kit)(oft of of kit),并加入200 µL(oft of of of kit)(oft of of Kit)。 ice for 5 min Centrifuge for 3 min at 13,000 rpm TRANSFER supernatant to a 1.5 mL tube Add 600 µL isopropanol at ambient temperature Mix by inverting the tube Centrifuge for 3 min at 13,000 rpm DISCARD the supernatant 2 Add 600 µL of 70% ethanol at ambient temperature Centrifuge for 3 min at 13,000 rpm 3 DISCARD ethanol Dry pellet at 37°C在50-100 µL的水或洗脱缓冲液中重悬于gDNA(套件):如果需要更多的DNA,则每个培养物多个管子以上一个管。这些可以在较小的体积中洗脱,并在洗脱步骤中合并。根据细菌菌株以达到所需的DNA量,提取1至4个颗粒可能是必需的。2 DNA颗粒可能并不总是可见。乙醇洗涤通常会显示出更长的3个离心机,如果白色颗粒保持松动,以促进收集干净的上清液。QC