结果和讨论:结果表明,物种的差异导致了两种森林之间土壤特性的差异,尤其是在云南氏假霉菌的土壤pH值显着增加。森林和Armandii Franch的土壤pH值显着减少。森林。氮添加均未显着影响任何任一元尼南氏菌的微生物多样性。或P. Armandii Franch。土壤;但是,森林类型的差异对细菌多样性产生了重大影响。氮的添加显着影响了两种森林中特定微生物群落的相对丰度,尤其是改变了云尼南氏菌的真菌群落结构,而在两种森林类型的细菌群落结构中均未观察到任何显着变化。此外,氮的添加增加了云尼那尼氏菌的细菌群落的网络复杂性。森林,同时降低了Armandii Franch的网络复杂性。森林。结构方程建模表明,氮添加通过修饰氮的可用性来调节两种森林类型的土壤细菌和真菌多样性。
超快激光脉冲在介电时的贝塞尔束在空间形状上形成,产生了高纵横比等离子体通道,其松弛会导致纳米渠道的形成。我们报告了纳米渠道钻孔效率的强烈增强,并通过双脉冲在10至500 ps之间的延迟隔开。这使直径降低到100 nm的纳米通道形成。实验吸收测量结果表明,钻井效率的增加是由于能量沉积的结果增加所致。纳米通道的形成对应于第二脉冲吸收的急剧变化,证明了第一个脉冲产生的相变发生。这会产生一个高度吸收的长期状态。我们的测量结果表明,它与第一个激光脉冲照明后<10 ps的时间尺度内发生的温暖玻璃的半度性化兼容。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2025 年 1 月 29 日发布。;https://doi.org/10.1101/2025.01.29.635600 doi:bioRxiv 预印本
在这里,我们报告了Inn纳米线太阳能电池的第一个实验证明,该电池是通过以1.78 eV的带隙能量溅射来沉积的。通过在N -Inn/ P -SI结构中添加无定形Si(A -SI)缓冲液,我们在保持其材料质量的同时,提高了所得设备的光伏性能。我们首先通过DC溅射在Si(100)上优化了Si的沉积,获得了带隙能量为1.39 eV的无定形材料。然后,我们研究了A-SI缓冲层(0 - 25 nm)对Inn纳米线对Si(100)底物的结构,形态,电气和光学性质的厚度的影响。使用15 nm缓冲液N -Inn/A-Si/P-Si纳米线异质结式太阳能电池表现出令人鼓舞的短路电流密度为17 mA/cm 2,开路电压为0.37 V,填充因子为35.5%,指向2.3%以下2.3%以下(Am 1 Sun)(AM 1.5G)(AM 1.5G)。这些工作降低了距离溅射的A-SI的组合,可以用作潜在的钝化层,而纳米结构的活性层的光捕获增强可提高溅射的III-nitride设备的光伏效率。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
实现遵守NIS2指令是其范围内组织的优先事项。此过程需要对网络安全度量和实施方法进行彻底了解。为了支持您的努力,我们已经开发了一种易于使用的映射工具,该工具将NIS2要求与ISO/IEC 27001:2022 Standard连接起来。
经常导致创建由纯属金属或几层纯金属组成的涂料,另一种是纯金属,每种金属都有特殊目的。然而,合金沉积并不少见。用于印刷电路和Fe-Ni的PB-SN合金作为录音行业中的软磁铁,已用于长石灰[7,8]。最近,对微机械系统(MEMS)中用作硬磁体的PT-CO合金非常感兴趣[9,10]。与Ni或CO的W和RE合金的电镀也在近年来获得了高温或高耐磨性耐药性的兴趣[11,12]。比化学或物理蒸气沉积的方法(CVD和PVD)具有多种优势。其中包括低成本,低温施用,厚度的均匀性或成反比设计的nuni形式(即,仅在表面上的特定区域涂层)[13,14]。
1. Yu, JH, Choi, YS, Shim, DS 和 Park, SH, Optics & Laser Technology, 2018, 106, pp.87-93. 2. Kanishka, K. 和 Acherjee, B., Journal of Manufacturing Processes, 2023, 89, pp.220-283.
摘要:二维(2D)半导体过渡 - 金属二甲藻元化(TMDC)是激动人心的兴奋性物理和下一代电子设备的令人兴奋的平台,从而提出了强烈的需求,以了解其增长,兴奋剂和异质结构。尽管在固体源(SS-)和金属 - 有机化学蒸气沉积(MOCVD)中取得了显着进展,但仍需要进一步优化,以增强高度结晶的2D TMDC,并具有受控的掺杂。在这里,我们报告了一种混合MOCVD生长法,该方法结合了液相金属前体沉积和蒸气相机 - chalcogen的递送,以利用MOCVD和SS-CVD的优势。使用我们的混合方法,我们证明了WS 2的生长,具有从分离的单晶结构域到各种底物的连续单层膜的可调形态,包括蓝宝石,SIO 2和AU。这些WS 2膜表现出狭窄的中性激子光致发光线的宽度,低至27-28 MeV和室温迁移率最高34-36 cm 2 v-1 s-1。通过对液体前体组成的简单修改,我们证明了V掺杂WS 2,Mo X W 1-X S 2合金和面内WS 2 - MOS 2异质结构的生长。这项工作提出了一种有效的方法,可以在实验室规模上满足各种TMDC合成需求。关键字:金属 - 有机化学蒸气沉积,2D半导体生长,过渡金属二甲构代化,掺杂,合金,WS 2,MOS 2,MOS 2
摘要:我们提出了一种自下而上的成功方法,设计了一种通用的等离子体增强原子层沉积 (PEALD) 超循环配方,以在 150°C 的相对低温下生长具有可调成分的高质量铟镓锌氧化物 (IGZO) 薄膜。原位实时椭圆偏振表征与非原位互补技术相结合,已用于优化薄膜的沉积工艺和质量,方法是识别和解决生长挑战,例如氧化程度、成核延迟或元素组成。开发的超循环方法通过调整超循环过程中的子循环比,可以轻松控制目标成分。与其他产生非晶态薄膜的低温沉积技术相比,我们在 150°C 下的 PEALD-IGZO 工艺可产生近乎非晶态的纳米晶态薄膜。通过超循环 PEALD 方法在低温下制备 IGZO 薄膜可以控制厚度、成分和电性能,同时防止热诱导偏析。关键词:IGZO、PEALD、超循环、XPS 深度剖析、电流密度