摘要 激光定向能量沉积(L-DED)作为一种同轴送粉金属增材制造工艺,具有沉积速率高、可制造大型部件等优点,在航空航天、交通运输等领域有着广泛的应用前景。然而,L-DED在金属零件尺寸和形状的分辨方面存在工艺缺陷,如尺寸偏差大、表面不平整等,需要高效、准确的数值模型来预测熔覆轨道的形状和尺寸。本文提出了一种考虑粉末、激光束和熔池相互作用的高保真多物理场数值模型。该模型中,将激光束模拟为高斯表面热源,采用拉格朗日粒子模型模拟粉末与激光束的相互作用,然后将拉格朗日粒子模型与有限体积法和流体体积相结合,模拟粉末与熔池的相互作用以及相应的熔化和凝固过程。
摘要。通过等离子体增强化学气相沉积 (PECVD) 方法沉积薄膜是制造 MEMS 或半导体器件的关键工艺。本文全面概述了 PECVD 工艺。在简要介绍 PECVD 反应器的主要层及其应用(例如氧化硅、TEOS、氮化硅、氮氧化硅、碳化硅、非晶硅、类金刚石碳)之后,介绍了这些层。分析了工艺参数(例如腔体压力、衬底温度、质量流速、RF 功率和 RF 功率模式)对沉积速率、膜厚度均匀性、折射率均匀性和膜应力的影响。微机电系统 (MEMS) 和半导体器件的薄膜 PECVD 沉积的主要挑战是优化沉积参数,以实现高沉积速率和低膜应力,这在低沉积温度下是可能的。
铝合金在增材制造中的应用因其先进的几何形状和轻量化应用而备受关注。在定向能量沉积中,粉末原料用激光束处理,这提供了很高的工艺灵活性。然而,由于铝合金对氧化和孔隙率的敏感性,粉末原料在储存或回收后老化仍然是一项根本挑战。为了研究这些影响,AlSi10Mg 粉末批次在不同条件下老化,并通过定向能量沉积进行处理。结果表明,粉末老化不会显著改变颗粒尺寸或形态,但它会在粉末中引入更多的氧和氢。颗粒的氧化降低了粉末对激光束的吸收率,增加了熔池的润湿性,从而影响了轨迹几何形状。在从老化粉末中沉积的材料中观察到 3.5 到 4.2 倍的孔隙率,这很可能是由于老化粉末中氢含量增加而导致的氢孔。用老化粉末制造的部件的拉伸性能显示屈服强度降低 19.0%,极限强度降低 14.2%,伸长率提高 99.2%,这很可能是由于微观结构变粗和孔隙率增加造成的。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可协议开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
铝合金在增材制造中的应用因其先进的几何形状和轻量化应用而备受关注。在定向能量沉积中,粉末原料用激光束处理,这提供了很高的工艺灵活性。然而,由于铝合金对氧化和孔隙率的敏感性,粉末原料在储存或回收后老化仍然是一项根本挑战。为了研究这些影响,AlSi10Mg 粉末批次在不同条件下老化,并通过定向能量沉积进行处理。结果表明,粉末老化不会显著改变颗粒尺寸或形态,但它会在粉末中引入更多的氧和氢。颗粒的氧化降低了粉末对激光束的吸收率,增加了熔池的润湿性,从而影响了轨迹几何形状。在从老化粉末中沉积的材料中观察到 3.5 到 4.2 倍的孔隙率,这很可能是由于老化粉末中氢含量增加而导致的氢孔。用老化粉末制造的部件的拉伸性能显示屈服强度降低 19.0%,极限强度降低 14.2%,伸长率提高 99.2%,这很可能是由于微观结构变粗和孔隙率增加造成的。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可协议开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
1. 简介和文献综述 金属增材制造 (MAM) 是一种 3D 打印技术,对各个行业(例如航空航天、生物医学、能源)影响最为显著 (Armstrong 等人,2022 年)。根据 ASTM/ISO 52900:2021(ISO ASTM 标准 2021),MAM 分为以下类别:材料挤出 (MEX)、材料喷射 (MJ)、粘合剂喷射 (BJ)、粉末床熔合 (PBF)、定向能量沉积 (DED)、板材层压 (SL) 和瓮聚合 (VPP)。PBF 是最广泛的工艺技术,因为它成熟且精度高 (Mandolini 等人,2022 年),覆盖了 85% 的 MAM 市场 (AMPOWER GmbH & Co 2020 年)。另一方面,PBF 机器复杂且价格昂贵。最近,金属 MEX(M-MEX)因其以下优点而备受关注:成本低(例如台式系统)、设备简单(用户友好性)、潜在危害少(例如没有金属粉末损失)、电源有限(与 PBF 或 DED 相比)和环境可持续性增强(Suwanpreecha 和 Manonukul 2022;Bianchi 等人 2022)。另一方面,M-MEX 的主要缺点涉及线材(例如粘合剂类型的选择)及其生产工艺(例如合适的混合程序)。要求保证线材的高质量,以保证 3D 打印部件的最终形状、尺寸、尺寸和属性(Suwanpreecha 和 Manonukul 2022)。 M-MEX 也称为 mFFF(金属熔丝制造,(Bankapalli 等人,2023 年))、FDMet(金属熔融沉积,(Bankapalli 等人,2023 年))、金属 FDM(Ramazani 和 Kami,2022 年)、MF3(金属熔丝制造,(Singh 等人,2020 年)),其灵感来自 MIM(金属注射成型)和 FFF(熔丝制造)(Bankapalli 等人,2023 年)。这项技术的快速增长得益于 FFF 和 MIM 的大量投资。事实上,除了绿色部件的制造方法外,材料 MEX 与 MIM 相似(就整个过程而言)。M-MEX 可以制造出性能接近(或相同)于 MIM 的零件。就设计自由度而言,金属 MEX 更具吸引力,因为它不需要模具。 M-MEX 原料由金属粉末和聚合物粘合剂组成(图 1)。通过将原料挤压到构建平台上来创建 3D 对象(绿色部分)。需要脱脂以去除部分聚合物材料。烧结是最后一个过程,通过以下方式完全致密化部件
•零件验证过程是一份文档,描述了过程,构建布局,无损测试,破坏性测试和样品提取地点以及对零件验证构建的任何特定应用程序测试。•必须在执行零件验证构建和相关测试之前批准零件验证过程。•零件验证构建是使用批准的DED程序产生的牺牲构建。此构建包含在单个生产版本中生产的所有零件和见证优惠券。•捕获对材料性能的任何不可预见的几何影响,并允许特定于组件的测试(例如,爆发测试)。
随着电子设备对冷却系统的需求不断增长,纳米流体-微通道散热器(MCHS)已成为热门话题。然而,解决纳米颗粒沉积问题是将该技术推向工业规模的关键。传统研究侧重于静态纳米流体的化学特性。然而,热物理因素也会影响流动流体的沉积。为了分析直微通道中 Al 2 O 3 -水纳米流体的热物理特性,使用离散相模型(DPM)模拟布朗力。结果表明,布朗运动对颗粒沉积有很大影响。然而,对于 MCHS 中的纳米流体,温度对平均自由程的影响可以忽略不计。沉积速率随颗粒直径的增加而降低,但随速度的增加而降低。这些结果在设计新的微通道结构时具有指导意义,并能提供减少沉积的最佳条件。关键词:纳米流体、MCHS、DPM、沉积非参数
经常导致创建由纯属金属或几层纯金属组成的涂料,另一种是纯金属,每种金属都有特殊目的。然而,合金沉积并不少见。用于印刷电路和Fe-Ni的PB-SN合金作为录音行业中的软磁铁,已用于长石灰[7,8]。最近,对微机械系统(MEMS)中用作硬磁体的PT-CO合金非常感兴趣[9,10]。与Ni或CO的W和RE合金的电镀也在近年来获得了高温或高耐磨性耐药性的兴趣[11,12]。比化学或物理蒸气沉积的方法(CVD和PVD)具有多种优势。其中包括低成本,低温施用,厚度的均匀性或成反比设计的nuni形式(即,仅在表面上的特定区域涂层)[13,14]。
I.引言已经开发了许多用于沉积高质量YBCO薄膜[1]的技术[1],例如真空蒸发,激光消融,化学蒸气沉积,磁控溅射[2,3]等对高温超导膜沉积的发展和理解在很大程度上有助于在低温电信设备中应用,例如低通滤波器,延迟线和微波通信的天线,并生产在数字电路和鱿鱼中有用的Josephson连接。所有技术和应用都将取决于大型薄膜廉价生产的成功。尤其是越野膜的生长,多层人士仍然是一个非常复杂的事情。由于存在几种固有的物质问题,例如短相干长度,各向异性,低临界电流密度和化学计量学,因此该过程变得复杂。同样,在薄膜中,元素从底物扩散到膜到膜以及相邻层是多层结构中的另一个问题。
1. Yu, JH, Choi, YS, Shim, DS 和 Park, SH, Optics & Laser Technology, 2018, 106, pp.87-93. 2. Kanishka, K. 和 Acherjee, B., Journal of Manufacturing Processes, 2023, 89, pp.220-283.