摘要:能量管理策略对于发挥四轮驱动插电式混合动力汽车(4WD PHEV)的节能效果至关重要。针对4WD PHEV中复杂的多能量系统,提出一种新的双自适应等效消耗最小化策略(DA-ECMS)。该策略通过引入未来驾驶工况类别来调整等效因子,提高驾驶工况的适应性和经济性,优化多能量系统的管理。首先,采用自组织神经网络(SOM)和灰狼优化器(GWO)对驾驶工况类别进行分类,离线优化多维等效因子;其次,采用SOM进行驾驶工况类别识别,并匹配多维等效因子;最后,DA-ECMS完成前轴多能源与电驱动系统的多能量优化管理,释放4WD PHEV的节能潜力。仿真结果表明,与基于规则的策略相比,DA-ECMS经济性提高了13.31%。
– WLTP (1) 综合油耗 (l/100 km):1.3-1.4。WLTP (1) 综合 CO 2 排放量 (g/km):29 至 32。(1) 所提及的油耗和 CO2 排放量数据符合 WLTP 认证(欧盟法规 2017/948)。自 2018 年 9 月 1 日起,新车将使用世界统一轻型车辆测试程序 (WLTP) 进行类型认证,这是一种新的、更现实的油耗和 CO2 排放量测量测试程序。WLTP 完全取代了之前使用的测试程序新欧洲驾驶循环 (NEDC)。由于测试条件更现实,在 WLTP 下测得的油耗和 CO2 排放量在许多情况下高于在 NEDC 下测得的油耗和 CO2 排放量。燃油消耗和二氧化碳排放量可能因具体设备、选项和轮胎格式而异。请联系 DS Diplomates 了解更多信息或访问 www。ds-diplomates.com。
# 油耗和二氧化碳排放量数据根据 WLTP 测试循环确定。以上显示的二氧化碳排放量数据、BiK 值和建议零售价适用于未安装任何选装设备的标准车辆。二氧化碳排放量数据用于计算车辆首次登记时的车辆消费税 (VED) 和 BiK。添加选装配置可能会增加认证的二氧化碳排放量。这反过来可能会影响登记时应缴纳的 VED 金额,以及公司车辆驾驶员应缴纳的 P11D 值和实物福利税 (BiK)。所示数据仅供比较之用,仅应与按照相同技术标准测试的其他车辆的油耗和二氧化碳排放量进行比较。实际油耗和二氧化碳排放量取决于多种因素,包括但不限于:安装的配件(登记前后);天气变化;驾驶风格和车辆负载。WLTP(全球统一轻型车辆测试程序)用于测量油耗和二氧化碳排放量。有关 WLTP 测试循环的完整数据可在以下网址找到:www.vauxhall.co.uk/wltp
*日产 Juke Tekna+ DIG-T 114 DCT 与日产 Juke Tekna+ Hybrid 143 进行了比较。**日产 Juke Tekna+ DIG-T 114 DCT:综合油耗(升/100 公里):45.6(6.2);综合二氧化碳排放量(克/公里):140。日产 Juke Tekna+ Hybrid 143:综合油耗(升/100 公里):56.5(5.0);综合二氧化碳排放量(克/公里):114。车辆已根据 WLTP 测试程序获得认证。显示的 WLTP 数据仅用于比较。实际驾驶结果可能因天气条件、驾驶风格、车辆负载或注册后安装的任何配件等因素而异。
C-130XJ 保留了其前代机型的坚固机身,但性能和能力得到了极大改进。新的推进系统提供了更大的航程、更低的油耗和更好的起飞性能。发动机采用电子控制,在海平面温度高达 104°F 时提供最大功率,从而大大提高了在高海拔和高温下的性能。缩短的起飞距离使 C-130XJ 能够在较短的跑道上飞行;更快的爬升速度使其能够更快地达到更安全的高度以避开敌对威胁;更高的巡航上限使其能够在更省油的航线上飞行;更快的巡航速度和更低的油耗使每架飞机每天可以出动更多架次。
我们专注于轮胎系统监控,这是向更智能轮胎发展的一部分。目前只测量轮胎压力,但公司希望监控更多参数,如力。“智能”轮胎可以测量轮胎的完整性和压力、道路状况,甚至驾驶员的驾驶风格。在这种环境下,更换电池是不可持续或不切实际的,这是能量收集和自主无线传感器网络可以提供解决方案的一个例子,它可以提高驾驶员的安全性,同时降低油耗。
Jeppesen 高级副总裁兼航空总经理 Thomas Wede 表示:“通过移动 EFB 解决方案提供的数字飞行信息正在彻底改变航空业,我们很荣幸能与 Frontier Airlines 合作,他们正在评估在飞行的各个阶段使用 iPad 的可能性。iPad 上的 Jeppesen FliteDeck Pro 将帮助 Frontier Airlines 提高地面和空中的运营效率,减少飞行员的工作量,提高态势感知能力,减少油耗,从而降低运营成本。”
条件。表格显示了新的循环,旨在更代表日常驾驶。新的燃油消耗测试是根据指令 93/116/EEC 进行的。所有汽油发动机车辆均配备三向催化转换器。上面列表中给出的结果并不表示或暗示对特定车辆燃油消耗的任何保证。汽车不会单独测试,同一型号的车辆之间不可避免地存在差异。此外,您的汽车可能包含特定的修改。此外,驾驶员的风格和道路交通状况以及汽车的年龄和行驶里程以及维护历史都会影响油耗。
1. 驾驶员降低油耗的首要方法是减速。MCI 测试表明,由于空气动力学,将车速从 70 英里/小时降低到 55 英里/小时可使燃油经济性提高 26%。2. 不要猛踩油门。在城市道路上,强调平稳的启动和停止功能。驾驶员的行为和风格可对燃油经济性产生高达 30% 的影响。3. 尽可能使用巡航控制。与使用巡航控制的平均行程相比,MPG 经济性可提高 30% 以上。燃油经济性通常会在 50 英里/小时以上迅速下降。根据经验,每超过 50 英里/小时,燃油效率就会降低 0.1 英里/加仑。4. 尽量减少怠速时间。每增加 1 小时的怠速时间,驾驶员的燃油效率就会下降 1%。5. 清洁空气和燃油滤清器以及正确保养的车轮轴承可以提高燃油经济性。在 NFI.parts 上探索节油产品。 6. 适当的轮胎充气、状况和换位可显著提高燃油经济性。轮胎充气不足 10% 相当于燃油效率降低约 1%。7. 在炎热的天气里,请寻找阴凉处!怠速运行空调不仅浪费燃料,而且在大多数地方,法律都禁止这样做。8. 使用适合道路条件的正确轮胎尺寸和轮廓将使您的客车更加高效。由于滚动阻力较小,磨损到 7/16 的轮胎比磨损到 7/16 的轮胎每加仑可省油约 5%。深凸纹或粗胎面花纹在恶劣的冬季气候下效果很好,但改用高速公路胎面设计将增加行驶里程并降低道路噪音。9. 在 30 英里/小时的风速下,客车在逆风和顺风之间,在 72 英里/小时的速度下油耗会降低 43%,在 65 英里/小时的速度下油耗会降低 48%。10. 最后,低温也是影响燃油性能的重要因素。温度每下降 10 度,空气阻力(或气动阻力)就会增加 2%,燃油效率就会降低 1%。* MCI 建议充分利用分析和培训,使操作员掌握维护、诊断和维修系统的知识和技能,从而最大程度地提高盈利能力。客户可以利用 NFI Connect™(一种独家的高级远程信息处理解决方案)、燃油消耗报告和基于驾驶操作或操作条件的车辆性能低下时的自动通知,以及 MCI Academy 屡获殊荣的 LMS 培训课程,包括驾驶员培训、燃油效率和维护。要继续对话,请与您的 MCI 代表联系。
结果表明,与其他车辆类型和油耗相比,用RD 100(HVO柴油生物燃料)加油的冰车HVO - 平均(RD100)的冰车(HVO柴油生物燃料)的每公里的排放最低。这主要是与目前BEV和FCEV相比,柴油汽车生产较低的排放量的结果。虽然生物燃料的生命周期温室气体排放量低于常规燃料(约90%)22,但由于生物燃料(尤其是甲烷和氧化二氮的燃烧),该值并不为零。在生物燃料燃烧时产生的CO 2排放被认为是“ 0”,以解释其生长过程中快速生长的生物能源吸收的CO 2。