1。如果可能的话,安全退出道路。2。将反射性交通锥或三角形沿着通往泄漏地点的道路。3。如果溢出可能导致紧急情况,请拨打911。4。如果溢出物可能损害公共或环境健康或引起犯规气味,请用水合石灰覆盖裸露的污泥。5。如果溢出很大,请立即联系生态部的溢出响应小组。6。如果泄漏进入水路,请立即致电1-800-645-7911 7。如果溢出发生在州高速公路或州际公路上,请立即与区域运输局联系以寻求帮助。8。与发生泄漏发生的县卫生部门的工作人员联系。9。如果溢出物可能影响了水道,自然区域,鱼类和野生动植物或其他自然资源,请联系生态部,鱼类和野生动植物系和自然资源部的地区办事处。10。尽快与生态部西南地区办事处的生物固体协调员联系,但在溢出后不超过24小时。除非生态学放弃,否则请在5天内提交溢出物的书面解释。书面说明必须包括以下内容:
3.3.1.正常运行 ...................................................................................................................... 26 3.3.2.报警级别 ...................................................................................................................... 27 3.3.3.报警延迟 ...................................................................................................................... 28 3.3.4.自检和自清洁 ...................................................................................................................... 30 3.3.5.加热(可选) ...................................................................................................................... 31 3.3.6.输出选项 ...................................................................................................................... 32
GOV-1 – 行政、管理和监督机构的作用 GOV-2 – 向企业的行政、管理和监督机构提供的信息以及其处理的可持续性问题 GOV-3 – 将可持续性相关绩效纳入激励计划 GOV-4 – 可持续性尽职调查声明 GOV-5 – 可持续性报告的风险管理和内部控制
物联网 (IoT) 旨在通过提供有或没有人工干预的路径来自动化世界的生活,这将使比我们遇到的更大或更小的任务自动化。由于物联网 (IoT) 旨在简化工作,因此使用安全性来加强现有的安全标准也是切实可行的。物联网并没有忽视每个项目的基本目标。在开放或封闭的情况下,气体泄漏可能很严重。虽然传统的气体检测系统无噪音且准确,但它们在警告人们泄漏方面没有意识到一些关键方面。因此,我们为工业和社会建立了实施,它将检测气体泄漏并监测气体可用性。警报技术包括向适用命令发送消息以及分析传感器读数数据的能力。如今,气体泄漏和检测是我们日常生活中的主要问题。液化石油气非常易燃,对人和财产都构成风险。为了避免此类事故,人们付出了大量努力来开发可靠的气体泄漏检测系统。我们的重要目标是向该地区的家庭推荐一种包括气体泄漏检测硬件的气体检测仪。它可以监测工作场所空气中的危险化学物质,也可以在家庭中使用,通过 LCD 发出警报并向已记录的电话号码发送消息。
Liangyu Chen 1 ∗ , Simon Pettersson Fors 1 , Zixian Yan 1 , Anaida Ali 1 , Tahereh Abad 1 , Amr Osman 1 , 2 Eleftherios Moschandreou 1 , Benjamin Lienhard 2 , 3 , Sandoko Kosen 1 , Hang-Xi Li 1 , Daryoush Shiri 1 , Tong 3 Liu 1 , Stefan Hill 1 , Abdullah-Al Amin 1 , Robert Rehammar 1 , Mamta Dahiya 1 , Andreas Nylander 1 , 4 Marcus Rommel 1 , Anita Fadavi Roudsari 1 , Marco Caputo 4 , Leif Grönberg 4 , Joonas Govenius 4 , Miroslav 5 Dobsicek 1 , Michele Faucci Giannelli 1 , Anton Frisk Kockum 1、Jonas Bylander 1、Giovanna Tancredi 1、∗ 6 1 微技术与纳米科学系,7 查尔姆斯理工大学,41296 哥德堡,瑞典。8 2 普林斯顿大学化学系,普林斯顿,新泽西州 08544,美国 9 3 普林斯顿大学电气与计算机工程系,10 普林斯顿大学,普林斯顿,新泽西州 08544,美国 11 4 芬兰 VTT 技术研究中心,FI-02044 VTT,芬兰 12(日期:2024 年 9 月 24 日)13
垂直联合学习(VFL)是一个分布式机器学习范式,它使用具有功能的被动方和带有其他标签的主动聚会进行协作训练模型。虽然VFL通过数据局部iZation提供隐私保护,但标签泄漏的威胁仍然是一个重要的挑战。标签泄漏是由于标签推理攻击而发生的,在这种情况下,被动方试图推断标签的隐私和商业价值。已经对这种特殊的VFL攻击进行了广泛的研究,但仍缺乏全面的摘要。为了弥合这一差距,我们的论文旨在调查现有的标签推理攻击和侵害。我们分别针对标签推理攻击和防御措施提出了两个新的分类法。除了总结当前的研究状态外,我们强调了我们认为具有强大的技术,并且可能会影响未来的研究。此外,总结了实验基准数据集和评估指标,以提供后续工作的指南。
摘要。与任何加密算法一样,后量子 CCA 安全公钥加密方案的部署可能伴随着需要防范侧信道攻击。对于现有的未考虑泄漏的后量子方案,最近的结果表明,这些保护的成本可能会使其实施成本增加几个数量级。在本文中,我们描述了一种专门为此目的量身定制的新设计,即 POLKA。它利用各种要素来实现高效的侧信道保护实现,例如:(i) 刚性属性(直观地意味着去随机化加密和解密是注入函数)以避免 Fujisaki-Okamoto 变换非常容易泄漏的重新加密步骤,(ii) 通过合并虚拟密文实现解密的随机化,消除对手对中间计算的控制并使这些计算变得短暂,(iii) 密钥同态计算可以屏蔽侧信道攻击,其开销与共享数量呈线性关系,(iv) 困难的物理学习问题可以讨论一些关键的未屏蔽操作的安全性。此外,我们使用显式拒绝机制(对无效密文返回错误符号)来避免隐式拒绝造成的额外泄漏。因此,POLKA 的所有操作都可以以比最先进的设计更便宜的方式防止泄漏,从而为量子安全和抗泄漏的方案开辟了道路。
该项目由天然气行业社会和环境研究联盟 (GISERA) 提供支持。CSIRO 的天然气行业社会和环境研究联盟 (GISERA) 是 CSIRO、联邦政府和州政府以及行业之间的合作,旨在开展公开报告的独立研究。GISERA 的目的是让 CSIRO 为生活在天然气开发地区的社区提供有质量保证的科学研究和信息,重点关注社会和环境主题,包括:地下水和地表水、生物多样性、土地管理、海洋环境、人类健康影响和社会经济影响。GISERA 的治理结构旨在提供和保护研究独立性和研究成果的透明度。有关更多信息,请访问 www.gisera.csiro.au
摘要。将微处理器与侧通道攻击进行硬化是确保其安全性的关键方面。此过程中的关键步骤是在识别和减轻“泄漏”硬件模块,该模块在执行加密算法期间泄漏信息。在本文中,我们介绍了不同的泄漏检测方法,侧通道漏洞因子(SVF)和测试向量泄漏评估(TVLA)如何有助于对微处理器的硬化。我们使用两个加密算法sha-3和AES对两个RISC-V核心Shakti和Ibex进行实验。我们的发现表明,SVF和TVLA可以为识别泄漏模块提供宝贵的见解。但是,这些方法的有效性可能会因使用的特定核心和加密算法而有所不同。我们得出的结论是,泄漏年龄检测方法的选择不仅应基于计算成本,还应基于系统的特定要求,所检查算法的实施以及潜在威胁的性质。
使用扫描探针显微镜 (SPM) 中的自动化实验探索介电薄膜中的电子传导途径。在这里,我们使用大视场扫描来确定局部导电点的位置,并开发 SPM 工作流程以自动化方式探测它们在更高空间分辨率下的动态行为,这些行为是时间、电压和扫描过程的函数。使用这种方法,我们观察到 20 纳米厚的铁电 Hf 0.54 Zr 0.48 O 2 薄膜中导电点的变化行为,其中导电点在连续扫描过程中消失并重新出现。扫描过程中还会出现新的导电点。自动化工作流程是通用的,可以集成到各种显微镜技术中,包括 SPM、电子显微镜、光学显微镜和化学成像。