摘要 微泡是纳米尺寸的充气气泡。它们用于临床诊断、医学成像、超声成像中的造影剂以及靶向药物输送的转运体。它们还可用于治疗血栓形成、肿瘤疾病、开放性动脉和血管斑块以及癌症患者的局部化疗输送。微泡可以填充任何类型的治疗剂、治疗剂、生长因子、细胞外囊泡、外泌体、miRNA 和药物。微泡具有由脂质和蛋白质组成的特殊封装外壳,可保护其货物免受免疫攻击。填充治疗药物后,它们可以安全高效地在整个身体中循环,到达目标区域。先进的基于气泡的药物输送系统结合人工智能进行指导,为药物和药品的靶向输送带来了巨大的希望。 关键词:人工智能、微泡、纳米囊泡、药物运输、靶向治疗
热塑性泡沫通常由两相(固相和气相)组成,其中固相是聚合物基质,气相是基质内相互连接或隔离的细胞状结构中滞留的空气。此外,泡沫还可以根据细胞大小、结构、刚度、支柱结构和所用的发泡剂进行分类,如图 1 所示。通常,在泡沫加工过程中,气体要么被吹入熔融的聚合物中(物理发泡),要么被吹入在不同加工条件下因化学反应或热分解而释放气体的化合物中(化学发泡)。然而,获取热塑性泡沫具有挑战性,因为它涉及有效利用各个科学领域的知识库,包括聚合物化学、物理学、工程——化学、机械和工艺以及设备设计和操作。
Buckeye Premium 3% MS-AFFF 是一种高级 AFFF 浓缩液,专为符合美国 MIL- F-24385 而设计。当泡沫溶液从泡沫层中排出时,它会在 B 类碳氢化合物燃料表面形成一层抑制蒸汽的水膜。它适用于 B 类碳氢化合物燃料,如汽油、煤油和柴油,配比为 3%(3 份 MS-AFFF 浓缩液兑 97 份水)。Buckeye Premium 3% MS-AFFF 不适用于可与极性溶剂/水混溶的燃料,如醇、酮、乙醇和酯。
可变操作:Gusmer 型号 FF-1600 DVR 是一款独特的多功能双可变比率计量装置。该气动装置旨在为各种聚氨酯泡沫、弹性体和其他多组分系统和应用提供可变比率配比。它结合了之前 Gusmer 设计的成熟原理以及专门开发的技术创新,可实现可变比率混合和雾化、温度控制、可靠性和易于维护。
12 月 16 日,最后一架空中客车 A380 客机 MSN272 交付给巨型客机客户阿联酋航空,使这一短暂却具有标志性的飞机项目的总交付量达到 251 架。这款四引擎巨型客机深受乘客喜爱,是阿联酋航空连接世界的巨型航空公司战略的关键支柱,但它诞生于新一代燃油效率更高的宽体双引擎客机(以波音 787 为代表)推出的时代,这种客机提供点对点旅行,绕过了拥挤的大型枢纽。与此同时,A380 的进一步发展,如货机、加长机身和重新配备引擎的新型变体,都化为泡影。然而,尽管 A380 在商业销售方面失败了(并且将继续飞行多年),但它确实成功地将欧洲实体 EADS 更紧密地整合到空中客车这个单一的企业巨头中,目前空中客车在商业航空航天领域占据主导地位。因此,A380 广为人知的布线问题源于法国和德国设计办公室之间的差异,这有助于形成空客如今的单一团队关注点。然而,这是一个代价高昂的教训——一些批评者会认为,这个欧洲旗舰航空航天项目的傲慢加剧了这一教训。快进到今天——特大城市的不断增长正在帮助推动另一个主要航空航天领域——电动垂直起降飞机和城市空中交通的发展。在这里,电动垂直起降飞机的倡导者预见到城市交通拥堵(而不是像 A380 那样的机场交通拥堵)将迫使通勤者飞上天空,摆脱拥挤的地面交通方式。这个预测会像 A380 那样(见 eVTOL 泡沫?,第 14 页)还是会成功(见垂直起降梦想由此而生,第 29 页)?有一件事是肯定的——无论如何,我们都将迎来一段激动人心的旅程。
抽象背景del妄是一种临床症状,可能在患者中产生严重的副作用,并且表现出可逆性。术后ir妄是手术后直接或间接影响患者的重要神经心理学并发症。心脏手术由于手术程序的复杂性,术中和术后麻醉药的使用以及其他药理学剂以及可能的术后并发症而增加了ir妄的风险。这项研究旨在确定心脏手术后del妄的发展与其因果关系的发展及其相关的术后补充之间的关系,并确定术后del妄的高相关风险因素。方法由730名接受重症监护病房并接受心脏手术的患者组成。根据患者的医疗信息记录,收集的数据包括19个风险范围。作为一种ir妄诊断工具,我们使用了重症监护irrium筛查清单,其中四个或更多点表示del妄。用于统计分析,根据del妄的存在或不存在因变量,而独立变量是根据del妄的风险因素确定的。t检验,χ2检验和逻辑回归分析分析是在两组之间的危险因素上进行的 - del妄组和没有del妄组。在心脏手术后730名患者中,有126例(17.3%)观察到术后di妄。术后并发症在del妄组中更为常见。在12个因素中的7个中发现了与术后del妄相关的独立危险因素。结论是心脏手术是侵入性的,并且会影响ir妄的发展和严重性,努力和干预方法对于预测手术前ir妄的危险因素,并防止手术后发生。将来有必要进一步研究可以直接干预的del妄的因素。
由于这些化学物质可能对人类健康造成危害,美国国防部 (DoD) 和联邦航空管理局合作开展了一项重大研究项目,涉及无氟灭火泡沫的测试。2018 年联邦航空管理局重新授权法案第 332 条规定,联邦航空管理局不得要求使用氟化学品来满足咨询通函 (AC) 150/5210-6 第 6 章《飞机灭火剂》中提到的性能标准,以及《联邦法规》第 14 篇第 139.319(l) 条规定的性能标准。这项规定加速了对不含 PFAS 的替代灭火泡沫的研究,并促使联邦航空管理局发布旨在帮助减少现有泡沫对环境影响的指导意见。具体而言,2019 年 6 月 20 日发布的第 139 部分政策指导#108《在经认证的第 139 部分机场排放水成膜泡沫 (AFFF)》建议 FAA 机场认证安全检查员不再要求在定时响应演习期间排放 AFFF。
能源管理是适用于智能建筑物(SBS)的微电网(MGS)的主要挑战之一。因此,更多的研究是必不可少的,要考虑建模和操作方面,以利用系统的即将到来的不同应用程序。本文介绍了一种新型的能源管理建筑模型,该模型基于完整的监督控制和数据获取(SCADA)系统的职责,其中包括MG实验室(LAB)测试床,该模型在罗马萨皮恩扎大学的电气和能源工程系中名为Lambda。Lambda MG实验室以小规模A SB模拟,并与Dieee电网连接。lambda mg由光伏发电机(PV),电池能量存储系统(BESS),智能开关板(SW)以及不同的分类负载(关键,必不可少的和正常)组成,其中一些是可管理的且可控制的(照明,空调,空调,空调,智能插头)。Lambda实施的目的是使Diaee Smart用于节能目的。在Lambda实验室中,通信体系结构包括由两个主要国际标准(电气和技术监控系统的工业序列标准)和KONNEX(商业和家庭建筑自动化的开放标准)进行的大师/奴隶单位和执行器组成。使电气部门的智能原因从主电网中降低所需的电源。因此,为了实现目标,已经以两种模式进行了研究。最后,在不同的情况下对拟议的模型进行了研究,并从经济方面进行了评估。最初,基于SCADA系统的实时模式,该模式揭示了不同来源和负载的实际日常功耗和生产。接下来,将模拟零件分配给基于能量管理系统的主网格,负载和BES充电和放电的行为。©2021作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。