endnotes 1 Crook等。(2016)可以增加现有船只唤醒的反照率,以减少气候变化,in:JGR Alterneres,第1卷。121(4):1549 - 1558,https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015jd024201#jgrd52751-bib-0008; ETC Group andHeinrichBöll基金会(2020)地球工程地图:微泡和海泡沫,https://map.geoengineeringmonitor.org/ 2 Seitz(2010年)(2010年)明亮的水:水溶液,节水,节水和气候变化,in:Climatic Crange,Climatic Crange,第1卷,第1卷。105(3-4):365 - 381,https://link.springer.com/article/10.1007/s10584-010-010-9965-8; Kintisch(2010)微小的气泡可以冷却地球?in:ScienceMag,在线发布:2010年3月26日,https://www.sciencemag.org/news/news/2010/03/could-tiny-tiny-bubbles-cool-cool-planet; Edwards(2010)削减全球变暖的明亮水提议,in:Phys.org,在线发布:2010年3月29日,https://phys.org/news/2010-03-03-bright-global.html 3同上(Crook等)(2016)); University of Leeds (2016) Smaller, longer-lasting bubbles could reduce global temperatures, in: Priestley International Centre for Climate News, published online: March 2, 2016, https://climate.leeds.ac.uk/news/smaller-longer-lasting-bubbles-could-reduce-global-temperatures/ 4 Ortega and Evans (2018) On the energy required to maintain an ocean mirror using the泡沫的反射,在:机械工程师制度的论文集,部分:海上环境工程杂志,第233(1):388 - 397,https://journals.sagepub.com/doi/doi/abs/10.1177/1177/1477/1477/1477/1477/1477/1477/1477/1477/1477/147777777777777777777750442? Rowland等。(2015)海盐作为潜在的海洋镜材料,在:RSC Advances,第1卷。化学。Phys。,第1卷。 (2016),Gabriel等。 (2016))Phys。,第1卷。(2016),Gabriel等。(2016))5(49):38926 - 38930,https://pubs.rsc.org/en/content/content/articlelanding/2015/ra/c5ra03469h#divabstract 5 Gabriel等。(2017)G4FOAM实验:区域海洋反照率修改的全球气候影响,载于:Atmos。17:595-13,https://www.atmos-chem-phys.net/17/595/2017/acp-17-595-2017.pdf 6同上(2017)); Evans等。(2010)海洋泡沫可以限制全球变暖吗?,在:气候研究,第1卷。42(2):155-160,http://www.int-res.com/abstracts/cr/v42/n2/p155-160/; Robock(2011)泡沫,泡沫,辛劳和麻烦。编辑评论。,在:气候变化,第1卷。105:383-385 7同上(Crook等人,(2016),Gabriel等。(2017)); Evans等。(2010),Robock(2011))8 Carrington(2014)科学家说,将阳光反映在太空中带来了可怕的后果。 (Crook等人(2016),Robock(2011))10 Sheppard(2010)BP的糟糕分手:如何有毒是corexit?in:Mother Jones,在线出版:在线发布:2010年9月/2010年,https://wwwww.motherjones.com/%20 environment/2010/2010/2010/08/bp-ocean-dispersant-corepersant-corexit/11 ibign
参考文献1。Smith+Nephew2007。对广泛的微生物的非粘附性敷料的抗菌活性。内部报告。DOF 0703006。2。Smith+Nephew2007。对Allevyn Ag的非粘性敷料样品的细菌屏障测试(湿润),针对Marcescens的测试时间为7天。内部报告。DOF 070304。3。Smith+Nephew2007。对Allevyn Ag的非粘性敷料样品的细菌屏障测试(湿润),对MRSA的测试时间为7天。内部报告。DOF 070305。4。Smith&Nephew2006。对过程变化对Allevyn非粘性伤口敷料的制造的前瞻性用户评估内部报告/CE/022/ANA。5。Smith+Nephew2009。Allevyn Ag非粘附性敷料物理特性。内部报告。DS/09/013/R8。6。Smith+Nephew2008。对Allevyn Ag敷料的多中心市场评估。内部报告。sr/cime/009。7。Smith+Nephew2019。使用水分蒸气PEMEABISIO(MVP)和水分蒸气传输速率(MVTR)数据来支持涉及潮湿伤口愈合的产品索赔。内部语句。eo.awm.pcsgen.001.v2。8。养育AVM,Greenhill MT,Edmonds Me。比较治疗糖尿病足溃疡的两种敷料。伤口护理杂志。1994; 3(5):224-228。 9。1994; 3(5):224-228。9。Smith+Nephew2015。切割Allevyn变体。内部报告DS/14/318/r。10。Kurring PA,Roberts CD,QuinlanD。对社区渗出伤口的管理中的氢化细胞敷料的评估。英国护理杂志1994; 3(20):1049-1050,1052-1043。11。Leonard S,McCluskey P,Long S等。 评估Allevyn粘合剂和非粘合剂泡沫调味料。 伤口英国。 2009; 5(1):17-28。 12。 Smith+Nephew2018。 Project Etidot Testing -Allevyn非粘合剂敷料。 内部报告。 DS/18/264/r。 13。 Franks PJ,Moody M,Moffatt CJ等。 在慢性静脉溃疡管理中,两种泡沫敷料的随机试验。 伤口修复。 2007; 15(2):197-202。Leonard S,McCluskey P,Long S等。评估Allevyn粘合剂和非粘合剂泡沫调味料。伤口英国。 2009; 5(1):17-28。 12。 Smith+Nephew2018。 Project Etidot Testing -Allevyn非粘合剂敷料。 内部报告。 DS/18/264/r。 13。 Franks PJ,Moody M,Moffatt CJ等。 在慢性静脉溃疡管理中,两种泡沫敷料的随机试验。 伤口修复。 2007; 15(2):197-202。伤口英国。2009; 5(1):17-28。 12。 Smith+Nephew2018。 Project Etidot Testing -Allevyn非粘合剂敷料。 内部报告。 DS/18/264/r。 13。 Franks PJ,Moody M,Moffatt CJ等。 在慢性静脉溃疡管理中,两种泡沫敷料的随机试验。 伤口修复。 2007; 15(2):197-202。2009; 5(1):17-28。12。Smith+Nephew2018。Project Etidot Testing -Allevyn非粘合剂敷料。内部报告。DS/18/264/r。13。Franks PJ,Moody M,Moffatt CJ等。在慢性静脉溃疡管理中,两种泡沫敷料的随机试验。伤口修复。2007; 15(2):197-202。2007; 15(2):197-202。
空气中发现的空气动力学直径不同的颗粒由于对人类健康的影响而成为优先污染物。1大气颗粒物的很大一部分是生物素,2-4,由生物学来源的颗粒组成,包括细菌,真菌,古细菌,病毒,花粉,其碎片,成分和副产物,例如DNA,内毒素,内毒素和霉菌毒素。监测生物杂质对于评估空气质量,尤其是关于公共卫生,环境生态学和与大气化学有关的方面至关重要的。因为在典型的室内和室外环境中的生物溶质浓度相对较低或经历了强烈的时间波动,因此没有生物素溶胶采样器可以使用单个分析工具来确定它们中存在的微生物的特定特征,因此存在强大的相互依存性,因此在研究中存在循环依赖性的工具,并研究了工具技术和工具技术和工具技术。5,6
2.1 软质聚氨酯泡沫的基本化学性质…………………………………………... 5 2.1.1 发泡反应………………………………………………………………………………………….. 5 2.1.2 凝胶化反应……………………………………………………………………………………… 6 2.1.3 异氰酸酯基团化学性质…………………………………………………………………………... 7 2.1.4 泡沫配方的组分………………………………………………………………………….8 2.1.4.1 异氰酸酯 ………………………………………………………………………………… 10 2.1.4.2 多元醇 ………………………………………………………………………………... 12 2.1.4.3 水 ……………………………………………………………………………………… 17 2.1.4.4 催化剂 …………………………………………………………………………………… 17 2.1.4.5 表面活性剂 ………………………………………………………………………………… 19 2.1.4.6 交联剂 …………………………………………………………………………….20 2.1.4.7 辅助发泡剂 ………………………………………………………………… 21 2.1.4.8 添加剂 ………………………………………………………………………………….. 21
压缩空气泡沫于 20 世纪 70 年代在德克萨斯州开发,是一种在水资源极其稀缺的地区扑灭草原火灾的创新方法。该系统结合了两种技术,一种是降低水的表面张力的药剂,另一种是压缩空气,以产生更大的灭火剂体积。表面张力降低使水作为灭火剂更有效,这是通过将少量 A 类泡沫浓缩物引入水流中来实现的。然后将压缩空气注入溶液中以膨胀泡沫,产生大量泡沫气泡,以提供更大体积的灭火剂,这种灭火剂能够粘附在垂直表面上并流过水平表面,形成绝缘层。泡沫气泡比普通水更能有效地吸收热量,无论是固体流还是小液滴的形式。CAFS 可以从手持管线和主流设备中排放。
1 同德胜大学机械、生物力学和多物理应用超材料研究组,胡志明市 758307,越南 2 同德胜大学应用科学学院,胡志明市 758307,越南 3 伊斯兰阿扎德大学亚苏伊分会青年研究员与精英俱乐部,亚苏伊 7591493686,伊朗;alal171366244@gmail.com 4 里昂 ECAM,里昂大学 ECAM 实验室,69005 里昂,法国;ahmad.hajjar@ecam.fr 5 萨坦本阿卜杜勒阿齐兹王子大学瓦迪阿德瓦瑟工程学院机械工程系,瓦迪阿德瓦瑟 11991,沙特阿拉伯; oubeytaha@hotmail.com 6 喀土穆大学工程学院机械工程系,喀土穆 11111,苏丹 7 托木斯克国立大学对流传热传质实验室,列宁大街 36 号,634050 托木斯克,俄罗斯;sheremet@math.tsu.ru 8 克尔曼 Shahid Bahonar 大学工程学院机械工程系,克尔曼 7616913439,伊朗;mohsensp@kth.se 9 瑞典皇家理工学院材料科学与工程系,斯德哥尔摩 SE-100 44,瑞典 * 通信地址:mohammad.ghalambaz@tdtu.edu.vn (MG);chrihs@kth.se (CH-S.)
本研究中使用的石墨烯是一种基于三维碳(3D-C)的纳米结构泡沫状 TIM,具有相对较高的固有热导率(~80 W/mK)。[6] 中介绍了该材料的制备工艺和物理特性,以镍泡沫为模板来生长 GF,在环境压力下通过在 1,000 °C 下分解 CH4 将碳引入其中,然后在镍泡沫表面沉淀石墨烯薄膜。由于热膨胀系数的差异,石墨烯薄膜上形成了波纹和皱纹。在用热 HCl 溶液蚀刻掉镍结构之前,在石墨烯薄膜表面沉积一层薄薄的聚甲基丙烯酸甲酯 (PMMA),作为支撑,以防止石墨烯网络在此过程中坍塌。随后用热丙酮小心地去除PMMA层,即可得到连续、相互连接的石墨烯三维网络整体。
摘要 随机泡沫训练多个模糊规则泡沫函数近似器,然后将它们组合成单个基于规则的近似器。泡沫系统在来自训练有素的神经分类器的引导随机样本上独立训练。泡沫系统将神经黑匣子转换为可解释的规则集。基于模糊规则的系统具有底层概率混合结构,可对每个输入的规则产生可解释的贝叶斯后验。规则泡沫还通过广义概率混合的条件方差来衡量其输出的不确定性。随机泡沫通过平均其吞吐量或规则结构来组合学习到的加性模糊系统。随机泡沫在其规则、规则后验和条件方差方面也是可解释的。30 个 1000 规则泡沫在 MNIST 数字数据集的随机子集上进行训练。每个这样的泡沫系统的分类准确率约为 93.5%。平均吞吐量的随机泡沫实现了 96。 80% 的准确率,而仅对其输出进行平均的随机泡沫则实现了 96.06% 的准确率。吞吐量平均的随机泡沫也略胜于对 30 棵分类树进行平均输出的标准随机森林。30 个 1000 规则泡沫也在深度神经分类器上进行训练,准确率为 96.26%。对这些泡沫吞吐量进行平均的随机泡沫本身的准确率为 96.14%。对其输出进行平均的随机泡沫准确率仅为 95.6%。附录证明了加法系统模糊近似定理的高斯组合泡沫版本。
空气通道。聚氨酯前体泡沫所用的浸渍树脂一般为酚醛树脂、环氧树脂或糠醇。研究发现,糠醇浸渍聚氨酯泡沫的碳化速度高于酚醛树脂和环氧树脂浸渍泡沫的碳化速度[8]。前体泡沫的泡孔尺寸分布是决定所得碳泡沫泡孔尺寸分布的重要因素[8]。Vinton 等人 [9] 和 Franklin 等人 [10] 研究表明,RVC 的泡孔结构与前体泡沫几乎相同。据报道,通过在沿一个方向压缩前体的同时对其进行碳化,可以生产出具有特定长宽比泡孔的各向异性碳泡沫[11]。因此,要从开孔聚氨酯泡沫中获得具有不同泡孔尺寸(通常表示为每线性英寸的孔隙数,ppi)的 RVC,需要在聚氨酯发泡过程中控制泡孔尺寸。在聚合物基质中添加少量粘土可显著改善多种性能 [12,13]。复合材料合成中最广泛使用的粘土是蒙脱石 (MMT)。粘土颗粒具有层状片状结构,其中片状厚度约为 1 纳米,横向尺寸可达 1 微米。蒙脱石粘土被发现是聚氨酯泡沫的强效开孔剂 [14]。
投机性疯狂和非理性的旺盛导致引入了新的杠杆技术。叙事从基本的基本面转变为快速利润的潜力。猜测接管了贪婪,FOMO和牛群的心态。有些人可能将其称为庞氏骗局,但是好的庞氏骗局通常基于一个被广泛接受的真理。外来的郁金香是独特的罕见。无线电和汽车在1920年代彻底改变了生产力。在1990年代后期,尽管经济放缓,科技公司仍被视为弹性增长引擎。那些参与的人通常被标记为小人,但通常对他们促进的资产有真正的信念。在2006年,抵押经纪人有50年的数据支持他们的观点,即我们从未发生过全国住房危机,因此推动杠杆产品的风险很小。