量子力学基于复杂值量子波函数的基础概念,是一种令人印象深刻的自然理论[1]。在过去几十年中,已经利用了复杂值量子波函数中的量子干扰来开发新型量子技术,例如量子计算[2]和量子计量学[3]。然而,量子波函数的基本概念仍然难以捉摸,这是由于其复杂值的性质,这是从实际观察结果中直接访问,因为所有物理观察者都是遗传性的,并且具有真实的价值。这使波函数似乎是一种认知计算工具,在Born的规则[4]中,称为概率幅度[4],但不是本体论现实[5]。此外,用于推断多粒子波的常规断层扫描方法需要收集不同可观察到的指数信息[6],即使对于中等规模的量子系统,它也变得棘手了[7-9]。因此,一种测量多粒子波函数的直接和有效的方法不仅会更好地理解量子力学的基础概念,而且还将有助于表征不断增长的实验量子系统。
摘要 贝尔不等式是量子基础的基石之一,也是量子技术的基本工具。尽管人们付出了很多努力来探索和推广它们,但由于波函数坍缩,人们认为不可能从一个纠缠对中估计出整个贝尔参数,因为这将涉及测量同一量子态上不相容的可观测量。相反,本文报道了新一代贝尔不等式测试的首次实施,能够从每个纠缠对中提取一个贝尔参数值,同时保留对纠缠而不是破坏它。这是通过利用弱测量序列来实现的,允许在量子态上进行不相容的可观测量而不会使其波函数坍缩。从根本上讲,通过消除在不同测量基之间进行选择的需要,我们的方法扩展了反事实确定性的概念,因为它允许在贝尔不等式测试所需的所有基中测量纠缠对,从本质上消除了与未选择的基相关的问题。从实际角度来看,在我们对贝尔参数进行测量之后,粒子对内的纠缠基本保持不变,因此可以用于其他与量子技术相关或基础的用途。
在1927年索尔维会议之后,将近一个世纪,量子力学的最终本体论问题仍然没有解决。本质上,量子理论的所有公式都取决于波函数或状态向量的使用(或数学上等效的结构)。,但研究人员不同意国家向量是否是现实的完整而准确的表示,它是否代表了现实的一部分,但需要通过其他变量来增强现实的一部分才能完成,还是它是一种认知的工具,而不是完全代表现实的工具。,他们进一步不同意国家向量是否应该被认为是某种抽象的希尔伯特空间的要素,或者是否应以更直接的物理方式(例如,在诚实的三维“空间”中)对矢量的特定代表或该矢量的特定表示,是否存在某种基本的本体论状态。在这里,我想主张这些替代方案中极端立场的合理性,世界上的基本本体论完全由抽象的希尔伯特(Hilbert Space)中的向量代表,并根据统一的schr'odinger Dynamics及时演变。从颗粒和田地到空间本身的其他所有内容都被正确地认为是从那种严峻的成分组中出现的。这种方法被称为“疯狂的埃弗里特主义”(Carroll&Singh,2019年),尽管“希尔伯特太空原教旨主义”同样准确。让我们看看一个人最终会如何被一种意识形态所吸引,这种意识形态与我们对世界的直接经验完全不同。然后,我们认为波函数会根据当我们首先教授量子力学时,我们会向我们展示如何通过采用经典模型并量化它们来构建量子理论。想象我们在某个相空间上定义了一个经典的前体理论,在数学上以符号歧管γ表示,其进化由某些哈密顿函数H:γ→r确定。我们在相空间上选择一个“极化”,这等于根据规范坐标Q(定义“配置空间”)和相应的规范矩p对其进行协调,每个符号可能代表多个维度。这是一个相当通用的设置;对于在d维欧几里得空间中移动的n点粒子,配置空间与r dn是同构的,但是我们也可以考虑范围的理论,对此,坐标仅仅是整个空间中域的值。构造相应量子理论的一种方法是引入单独坐标的复杂值波函数ψ(q)∈C。波函数必须是可正常的,从某种意义上说,它们是正方形的,rψ∗ψdq <∞,其中ψ∗是ψ的复杂偶联物。现在,动量由线性算子ˆ P表示,其形式可以从规范的换向关系[ˆ q,ˆ p] = iℏ(其中操作符Q仅通过Q乘法)。这使我们能够将经典的哈密顿量提升为一个自动接合操作员ˆ H(ˆ q,ˆ p)(超过潜在的操作员订购的歧义)。
摘要 最近证明了非相对论量子公式可以从扩展的最小作用量原理 Yang (2023)。在本文中,我们将该原理应用于大质量标量场,并推导出标量场的波函数薛定谔方程。该原理通过考虑两个假设扩展了经典场论中的最小作用量原理。首先,普朗克常数定义了场需要表现出可观测的最小作用量。其次,存在恒定的随机场涨落。引入一种新方法来定义信息度量来衡量由于场涨落而产生的额外可观测信息,然后通过第一个假设将其转换为额外作用量。应用变分原理来最小化总作用量使我们能够优雅地推导出场涨落的跃迁概率、不确定关系和波函数的薛定谔方程。此外,通过使用相对熵的一般定义来定义场涨落的信息度量,我们得到了依赖于相对熵阶数的波函数广义薛定谔方程。我们的结果表明,扩展的最小作用原理既可用于推导非相对论量子力学,也可用于推导相对论量子标量场理论。我们期望它可以进一步用于推导非标量场的量子理论。
人们普遍认为量子计算比经典计算更具优势。科普文章有时会用量子并行性的概念来解释这种优势。事实上,量子计算机确实可以有效地“并行”操作包含指数级多个经典状态的量子波函数。不幸的是,有效操作(例如标准量子门)的类型是有限的。此外,任何量子计算都必须以将量子波函数坍缩为仅一个经典状态的测量结束。即使忽略噪声,这些警告也意味着量子计算是否具有任何实际优势并不明显。在学术上,对量子优势的信念更正确地得到了查询、时间和电路复杂度中的量子-经典分离的证据的支持。在电路复杂度方面,一个早期结果是参考文献。 [ 1 ] 证明了量子电路可以以恒定深度计算所有输入比特的奇偶校验,假设受控多非门 c-X ⊗ n 可以以恒定深度实现(另见后续工作,参考文献 [ 2 ])。因此,可以证明分离是可以实现的,因为可以证明奇偶校验无法通过恒定深度经典电路计算 [ 3 ]。更准确地说,分离是违背经典 AC 0 的
试图在大型系统上达到完全精确度显然面临着所谓的“指数墙”,这限制了最精确方法对更复杂的化学系统的适用性。到目前为止,用经典超级计算机执行的最大计算量也只包括数百亿个行列式 4 ,有 20 个电子和 20 个轨道,随着大规模并行超级计算机架构的进步,希望在不久的将来解决接近一万亿个行列式(24 个电子、24 个轨道)的问题。5 鉴于这些限制,必须使用其他类别的方法来近似更大的多电子系统的基态波函数。它们包括:(i) 密度泛函理论 (DFT),它依赖于单个斯莱特行列式的使用,并且已被证明非常成功,但无法描述强关联系统 6 – 8 ; (ii) 后 Hartree - Fock 方法,例如截断耦合团簇 (CC) 和组态相互作用 (CI) 方法,即使在单个 Slater 行列式之外仍然可以操作,但由于大尺寸分子在 Slater 行列式方面的计算要求极高,因此不能应用于大尺寸分子。9 – 16 一个很好的例子是“黄金标准”方法,表示为耦合团簇单、双和微扰三重激发 CCSD(T)。事实上,CCSD(T) 能够处理几千个基函数,但代价是巨大的运算次数,而这受到大量数据存储要求的限制。17 无论选择哪种化学基组(STO-3G、6-31G、cc-pVDZ、超越等),这些方法都不足以对大分子得出足够准确的结果。 Feynman 18,19 提出的一种范式转变是使用量子计算机来模拟量子系统。这促使社区使用量子计算机来解决量子化学波函数问题。直观地说,优势来自于量子计算机可以比传统计算机处理“指数级”更多的信息。20 最近的评论提供了有关开发专用于量子化学的量子算法的策略的背景材料。这些方法包括量子相位估计(QPE)、变分量子特征值求解器(VQE)或量子虚时间演化(QITE)等技术。21 – 24 所有方法通常包括三个关键步骤:(i)将费米子汉密尔顿量和波函数转换为量子位表示;(ii)构建具有一和两量子位量子门的电路;(iii)使用电路生成相关波函数并测量给定汉密尔顿量的期望值。重要的是,目前可用的量子计算机仍然处于嘈杂的中型量子(NISQ)时代,并且受到两个主要资源的限制:
量子波函数作为神经网络量子状态(NQS)的表示提供了强大的变异ANSATZ,用于查找多体量子系统的基态。然而,由于复杂的变分景观,传统方法通常采用量子几何张量的计算,因此可以使用优化技术。为旨在制定替代方法的努力做出贡献,我们引入了一种绕过度量标准的计算的方法,而是仅依赖于用欧几里得度量的一阶梯度下降。这允许应用较大的神经网络,并使用其他机器学习域中使用更标准的优化方法。我们的方法通过构建源自schrödinger方程的目标波函数,然后训练神经网络以近似该目标来利用假想时间演变的原理。我们通过确定最佳时间步长并保持目标固定直到NQS的能量减少来使此方法自适应和稳定。我们通过使用2D J 1 - J 2 Heisenberg模型的数值实验证明了我们计划的好处,该模型与直接能量损失最小化相比,它展示了增强的稳定性和能量准确性。重要的是,我们的方法通过良好的密度矩阵重新归一化组方法和NQS优化具有随机重新配置,以表现出竞争力。
摘要:通过将其集成(或收缩)与两电子空间求解,合同的量子本素(CQE)为多电子schro方程找到了解决方案的解决方案。当将CQE迭代应用于CSE(ACSE)的抗赫米特部分时,CQE迭代优化了波函数,相对于一般产品ANSATZ的两体指数式统一变换,可以精确地求解Schro dinger dinger方程。在这项工作中,我们通过经典优化理论的工具加速了CQE及其波函数ANSATZ的收敛性。通过将CQE算法视为局部参数空间中的优化,我们可以应用准二级优化技术,例如准牛顿方法或非线性共轭梯度方法。实际上,这些算法会导致波函数的超线性收敛到ACSE的溶液。收敛加速度很重要,因为它既可以最大程度地减少近期中等规模量子(NISQ)计算机上噪声的积累,又可以在未来易受断层量子设备上实现高度准确的解决方案。我们演示了算法以及与减少成本考虑有关的一些启发式实现,与其他常见方法(例如变异量子eigensolvers)的比较以及CQE的无费用编码形式。
基础量子力学(BQM):11. 在量子力学的背景下解释算子、状态、特征值和特征函数这些术语(首先针对双态系统,然后扩展到具有连续特征值的系统),并确定物理量的期望值和不确定性。12. 确定给定势阱(例如无限势阱和屏障)中粒子的波函数,并列举其在技术中的应用示例(例如量子点显示器、存储设备)。13. 使用特征函数的正交性并对叠加中的量子系统进行基本分析。14. 讨论量子现象(例如量子叠加、波函数坍缩、量子隧穿和海森堡不确定性原理),并解释它们与我们对现实的感知的冲突。15. 使用氢原子的量子数:n、l、m 确定相应的特征函数(来自给定的表格)并解决相关的简单问题。课程内容 基础(FND) 波的性质 光速 叠加、衍射和干涉 原子和亚原子粒子 狭义相对论(SR) 参考系和伽利略变换 狭义相对论和洛伦兹变换的假设 长度收缩和时间膨胀 闵可夫斯基时空图 解决悖论 相对论动量、动能和能量 基础核物理(BNP) 放射性粒子(𝛼,𝛽 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑎𝑛𝑑 𝛾−𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛) 核裂变和聚变 放射性 质能当量 医学应用和剂量 量子物理(QP) 黑体辐射物理量的量化光电效应康普顿散射和波长对的产生/湮没双缝实验戴维森-杰默实验波粒二象性氢原子(玻尔模型和原子光谱)基础量子力学(BQM)特征值、特征函数和算子两能级系统薛定谔方程和波函数概率(密度)无限和有限势阱(盒子中的粒子)量子谐振子势垒/台阶期望值和不确定性
自适应变分量子模拟算法使用来自量子计算机的信息来动态创建给定问题汉密尔顿函数的最佳试验波函数。这些算法中的一个关键因素是预定义的运算符池,从中构建试验波函数。随着问题规模的增加,找到合适的池对于算法的效率至关重要。在这里,我们提出了一种称为运算符池平铺的技术,该技术有助于为任意大的问题实例构建问题定制的池。通过首先使用大型但计算效率低下的运算符池对较小问题实例执行自适应导数组装问题定制拟定变分量子特征求解器 (ADAPT-VQE) 计算,我们提取最相关的运算符并使用它们为更大的实例设计更高效的池。我们在这里对一维和二维的强相关量子自旋模型演示了该方法,发现 ADAPT 会自动为这些系统找到一个高效的拟定。鉴于许多问题(例如凝聚态物理学中出现的问题)具有自然重复的晶格结构,我们预计池平铺方法将成为一种适用于此类系统的广泛适用技术。