摘要:最近,人们对具有负磁导率并在 GHz 和 MHz 频率范围内工作的磁性超材料进行了大量研究。这些超材料结构可用于提高近场无线电力传输系统、地下通信和位置传感器的效率。然而,在大多数情况下,它们只设计用于单一应用。本研究重点研究磁感应波在有序排列的磁性超材料结构中的传输。该结构可同时用于无线电力传输和近场通信。单元由植入在 FR-4 基板上的五匝螺旋线形成。外部电容器用于调节磁性超材料单元的谐振频率。磁感应波的特性,包括反射、传输响应和波导上的场分布,已经得到了广泛的计算和模拟。获得的结果表明,一维和二维磁性超材料配置都具有传导电磁波和传播频率为 13.56 MHz 的磁场能量的能力。还研究了直路径和交叉路径配置,以确定二维超材料板上的最佳配置。
表格列表........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... xi
硅光子学在过去十年中已成为未来应用的有前途的解决方案,例如5G Fronthaul,工业自动化,自动驾驶汽车,数据中心,计算机记忆分解和超越[1]的高速光学互连。通过利用互补的金属 - 氧化物 - 塞体导体(CMOS)制造技术先前是为电子工业开发的,已经开发了各种高速主动的光学组件,例如调制器和光电遗传学器[2,3]。此外,在各种FAB中,已优化了被动光学组件(例如光栅耦合器[4]和波导[5])的生产方法。为了进一步增强从/到光子积分电路(PIC)的被动组件和活动组件之间的光学连接,互连波导的正确设计和形状起着至关重要的作用。随着新的光子构建块的引入,例如硅芯片上III – V光源的异质整合,需要连续改进。有三种通用方法可以在两个波导之间实现光耦合:对接耦合,方向耦合和绝热耦合。对接耦合方法是指直接连接的两个波导的模式曲线匹配。通过最大化模式字段重叠来优化其耦合效率。因此,对于异质整合,在彼此之间需要在不同的组件之间耦合光,对接耦合不是首选选项。此外,定向耦合器的带宽有限,因为节拍长度取决于波长。在定向耦合方法中,当输入波导处的模式耦合到耦合区域的超级模型的叠加时,光耦合在两个平行波导之间。该模式以半节拍的长度从一个波导到另一个波导完全耦合,而节拍长度可以设计为短[6]。但是,在实践中很难精确确定确切的节拍长度,从而使功率传输效率和设备性能不确定。在绝热耦合方法中,
和安全优势。第一个光学透视 HMD 由 Sutherland 在 20 世纪 60 年代提出 6 。从那时起,光学透视技术在军事 7-11 、工业 12,13 和消费电子应用 14-16 中不断得到探索。已经开发出各种方法来将图像从微型投影仪引导到观察者,将现实世界的视图与虚拟图像相结合 16,17 。早期的 HMD 光学组合器基于传统的轴向分束器,如谷歌眼镜 18-20 所示。然而,由于视场 (FOV) 和框架尺寸与光学元件的尺寸成正比,因此在性能和舒适度之间取得平衡会导致此类智能眼镜的 FOV 更小。为了实现更大的 FOV,使用离轴非球面镜的 HMD
焦点区域:用于监控基础设施的光学传感器对于国家安全可靠的运营至关重要,包括发电,运输,电网,民用结构,利用和可再生能源。为了提高基础架构的弹性并提供脱砂选项,光纤传感器可以在多个集成系统上提供实时和大规模监控。This focus area will include papers on new techniques and applications for fiber optic sensing in infra- structure monitoring: • structural health monitoring • energy infrastructure monitoring such as pipelines, power grids, energy storage systems, and renewables • large civil structure monitoring such as bridges, roads, and buildings • utility infrastructure monitoring including electricity, water, sewage, etc.•使用人工智能增强数据分析的传感器数据集成和融合•碳捕获,运输,存储和甲烷改革等碳管理系统•用于氢基础设施的传感器。
摘要 - 我们为满足宽带耦合的基本要求,任意耦合率的支持,超低损失,高损坏,高制造公差和紧凑的足迹的支持,展示了一个高性能2×2分离器的设计。这是基于对弯曲方向耦合器(DC)的宽带响应的严格耦合模式理论分析来实现的,并通过演示完整的耦合模型,该模型的宽带值为0.4、0.5、0.6和0.7。作为基准,我们演示了一个0.5:0.5的分离器,可显着将耦合变化从传统DC中的0.391降低到80 nm波长跨度的0.051。这代表了耦合变化的显着降低7.67倍。此外,在提出的设计中使用了新发明的低损失弯曲,导致超低损坏设计,并具有可忽略的多余损失(0。003±0。013 dB)。拟议的0.5:0.5硅条波导的设计具有耐受性,并且在完整的300 mm晶圆上显示出持续的较低量变化,在80 nm波长范围内显示了最大的交叉耦合变化,在晶片的极端边缘处。futhermore,我们通过波导宽度耐受耐受性研究增强了晶圆映射,并确定了该设备在80 nm波长范围内的波导宽度偏差仅为±20 nm的最大耦合变化的设备的耐受性。这些规格使提出的分离器成为具有质量生产的实际应用的有吸引力的组成部分。
在光学和微波域之间转换信号的新策略可能在推进古典和量子技术方面起关键作用。传统的光学到微波转导的方法通常会扰动或破坏针对光线强度编码的信息,从而消除了这些signals进一步处理或分布的可能性。在本文中,我们引入了一种光学到微波转换方法,该方法允许对微波光子信号进行检测和光谱分析,而不会降低其信息含量。使用与压电电换能器集成的光力学波导证明了此功能。该系统内有效的机电和光力耦合允许双向光学到微波转换,量子效率高达-54.16 dB。通过在通用布里渊散射中保存光场包膜时,我们通过通过一系列具有独特的共振频率的电动机电sepguments传输光学信号来证明多通道微波光谱过滤器。这种电力力学系统可以为微波光子学中的遥感,通道化和频谱分析提供灵活的策略。
集成量子光子学中的方向性已成为在单光子水平上实现具有非线性的可伸缩量子技术的有前途的途径。拓扑光子波导已被提出是一种在芯片上利用这种定向光 - 物质相互作用的新方法。然而,与常规线缺陷波导相比,嵌入式量子发射器与拓扑波导的定向耦合的强度仍然存在。在这项工作中,我们使用实验,理论和数值分析的组合对一系列波导中的方向耦合进行了研究。我们定量地表征了光照耦合在几个拓扑光子波导上的位置依赖性,并基准了其定向耦合性能与常规线缺陷波导。我们得出的结论是,与传统的线缺陷波导相比,拓扑波导的表现不佳,将其定向光学凭证构成疑问。证明这不是领域成熟的问题;我们表明,最新的逆设计方法,同时能够改善这些拓扑波导的定向发射,但仍将它们显着地落后于常规(滑动平面)光子晶体波导的操作。我们的结果和结论为改善定量预测的量子非线性效应的实施铺平了道路。
光学放大设备是光学通信系统中的关键组件。在1980年代,Erbium掺杂的纤维放大器(EDFAS)是一项开创性的成就,可以实现长途光学通信和革命性的信息传输[1,2],因为EDFA一直为全球基于纤维的通信网络提供了低噪声的高收益,数十年来。erbium离子在覆盖高输出功率的电信带中表现出稳定和低噪声增益,使Erbium掺杂介质非常适合光学放大器和激光器。但是,EDFA通常需要一米至数十米的光纤长度,这使它们容易体现环境波动,并为整合工作带来挑战。半导体光放大器(SOA)具有高增益和集成,但它们具有极化敏感[3],噪声图也相对较高。对比,与不同光子平台的稀土离子掺杂显示了可以有效解决问题的综合掺杂波导放大器(EDWAS)的巨大希望[4,5]。根据1990年代开始对EDWA进行的研究[6]。如今,Edwas引起了重大的兴趣,受益于不同集成光子平台的传播损失,包括氮化硅(SI 3 N 4)[1、7-9] [1、7-9],氧化泰当不是(TEO 2)[10]和Niobate(Niobate(ln)[4、11-18)[4、11-18] [4、11-18] [4、11-18]>尤其是,由于其透明度较大,非线性和出色的电极(EO)特性,LN长期以来一直是光子学的有希望的材料。绝缘子(LNOI)平台上的Niobate锂结合了LN的优势与增强的模式限制,使其成为下一代光子集成电路
单光子和固态颜色中心之间的非线性相互作用是量子科学中许多应用的核心[1,2],例如实现量子互联网[3,4]。尤其是,钻石中的彩色中心已启用了这个方向的高级演示,显示了多键量子网络操作[5,6],内存增强的通信[7]和可扩展的芯片载荷混合动力集成[8]。Among the diamond color centers, the tin-vacancy center (SnV) has recently emerged as a promising qubit platform, as it combines the inversion symmetry of group-IV color centers [9,10] , allowing for integration in nanophotonic structures, with good optical properties [11 – 14] and above-millisecond spin coherence at temperatures above 1 K [15,16] .将光子整合与自旋和光学控制结合的设备可以用作实现自旋photon大门的未来可伸缩构建块[17]。在通往这种可扩展的片上整合的路径上,将发射剂掺入纳米光子波导中[12,18],可以探索相干的发射极 - 光子相互作用,典型的波导 - 耦合系统[19,20]。与纳米光腔相比[21],波导具有宽带的优势,消除了腔体调整的挑战,并且在制造中具有明显更高的误差耐受性。 在这封信中,我们提出了一个由SNV中心组成的设备,该中心与纳米型钻石波导搭配锥形纤维通道,如图所示 1(a)。 感谢有效的耦合,双面访问和实时与纳米光腔相比[21],波导具有宽带的优势,消除了腔体调整的挑战,并且在制造中具有明显更高的误差耐受性。在这封信中,我们提出了一个由SNV中心组成的设备,该中心与纳米型钻石波导搭配锥形纤维通道,如图1(a)。感谢有效的耦合,双面访问和实时
