通过便携式仪器持续监测心血管疾病的早期诊断对心脏呼吸信号的持续监测,人们对光杀解物学(PPG)的兴趣越来越越来越大。In this context, it is conceivable that PPG sensors working at different wavelengths simultaneously can optimize the identi fi cation of apneas and the quanti fi cation of the associated heart-rate changes or other parameters that depend on the PPG shape (e.g., systematic vascular resistance and pressure), when evaluating the severity of breathing disorders during sleep and in general for health monitoring.因此,这项工作的目的是提出一种新型的脉搏血氧仪,该脉冲血氧仪在传输模式下提供了与三个光波长(绿色,红色和红外线)相关的同步数据记录,以优化心率测量以及对氧饱和度的可靠且连续评估。传输模式在运动伪影中被认为比反射模式更健壮,但是由于该波长在该波长处的身体组织吸光度很高,因此电流脉搏血氧仪无法在传输模式下采用绿光。出于这个原因,我们的设备基于单光雪崩二极管(SPAD),其死亡时间很短(少于1 ns),同时具有单个光子灵敏度和高计率,允许在同一站点和传输模式下获取所有利率的所有利率。先前的研究表明,SPAD摄像机可用于通过远程PPG测量心率,但是到目前为止,从未解决过基于接触SPAD的PPG传感器通过接触SPAD的PPG传感器进行的氧饱和度和心率测量。对六名健康志愿者进行初步验证的结果反映了预期的生理现象,从而在小于70 ms的间隔间隔估计中提供了RMS误差(带有绿光),氧气饱和度的最大误差小于1%的氧气饱和度小于1%。我们的原型展示了基于SPAD的设备的可靠性,用于连续长期监测心脏响应变量,以替代光电二极管的替代方案,尤其是在需要最小的面积和光学功率时。
细胞间差异在微生物群落中存在无处不在。这种单独的异质性,通常是在细胞表型功能(例如抗生素耐药性)中ipest的人,对于确定MI Crobial群落的命运至关重要。然而,由于其巨大的多样性和复杂的细胞相互作用,研究微生物群落中这种异质性仍然是一个重大挑战。在这里,我们回顾了微流体技术在单细胞水平上检测,操纵和分类微生物种群的最新进展,这显着提高了我们对微生物行为及其在微生物生态系统中的作用的理解。我们将通过无标记的检测方法(包括光学成像和拉曼光谱)来强调微流体系统,因为它们在研究现实世界微生物群落方面具有优势。我们将在新兴应用中展示这些技术,包括快速诊断病原体和抗生素耐药性,趋化性和拉曼激活的细胞排序,以搜索具有理想表型功能的天然微生物细胞。
摘要:光量子技术有望彻底改变当今的信息处理和传感器。许多量子应用的关键是纯单光子的有效来源。对于用于此类应用的量子发射器,或对于相互耦合的不同量子系统,量子发射器的光发射波长需要进行定制。在这里,我们使用密度泛函理论来计算和操纵二维材料六方氮化硼中荧光缺陷的跃迁能量。我们的计算采用 HSE06 函数,它使我们能够准确预测 267 种不同缺陷的电子能带结构。此外,使用应变调谐,我们可以定制合适量子发射器的光跃迁能量,以精确匹配量子技术应用。因此,我们不仅提供了为特定应用制造发射器的指南,而且还提供了一条有希望的途径来定制可以耦合到其他固态量子比特系统(例如金刚石中的色心)的量子发射器。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2022 年 4 月 6 日发布。;https://doi.org/10.1101/2022.04.05.486971 doi:bioRxiv preprint
近年来卫星发射数量的快速增长以及未来十年计划发射的压力要求提高空间领域感知设施的效率。光学设施是全球空间领域感知能力的重要组成部分,但传统光学望远镜仅限于在相对较短的黄昏时期观测卫星。在这项工作中,我们探索将这个运行时间扩大到一整天,以大幅改善单个站点的观测机会。我们使用 Huntsman 望远镜探路者(一种主要使用自备组件制造的仪器)和佳能远摄镜头探索白天的空间领域感知观测。我们报告了 81 颗 Starlink 卫星的光度光变曲线,从太阳高度 20 度到中午不等。发现 Starlink 卫星特别明亮,亮度为 3 . 6 ± 0 . 05mag,σ = 0 . 6 ± 0 . 05mag(斯隆 r'),或比黄昏条件亮 ∼ 11 倍。与理论模型进行比较后,我们得出结论,这种令人惊讶的观测亮度是由于轨道卫星下方的地球反照所致。最后,我们讨论了亨茨曼望远镜探路者使用日间光变曲线探测卫星轨道方向变化的潜力。
相干技术目前正在深入讨论短距离内的光学互连。本文报告了先前工作的进度,该工作分析了从C-到O带光学方面的好处,以实现数字信号处理。在这里,我们研究了将连贯的方法适应已建立的数据中心互连技术(PSM4)的可行性。这种类似PSM4的实现带来了对激光漂移的弹性大大提高的好处,从而减少或消除了对温度稳定激光器的需求,这通常假定是相干收发器的需求。分析取决于SIGE光子BICMOS技术中相干接收器的先前实验实现的部分模拟参数。此外,我们还利用了有关在20 nm波长窗口上优化O-带2D光栅耦合器在效率和低极化依赖性方面的最新结果。我们将这些耦合器确定为启用类似于PSM4的实现的构建块。©2023作者。代表日本应用物理学会出版,由IOP Publishing Ltd
然而,预计未来几年 MIR PIC 将大幅增长,这主要归功于气体检测、生物系统、安全和工业应用传感器的发展 [https://mirphab.eu]。MIR 中的 PIC 需要能够在 MIR 波长范围内工作的新设备,因此很可能基于新的材料平台。[8] 光电探测器就是这样一种设备,它将光信号转换为电信号,是片上光电转换中必不可少的组件。然而,它必须满足几个重要要求,例如与互补金属氧化物半导体 (CMOS) 技术的兼容性、在很宽的波长范围内工作以及无需冷却,这会增加系统的复杂性和成本。[6] 相比之下,大多数先前提出的 MIR 波长范围内的光电探测器要么制造成本高,要么不能在很宽的波长范围内工作,要么不切实际,因为它们需要冷却到低温。因此,对 MIR 光电探测器的搜索仍在进行中。解决方案可能是将热量转化为电能的热探测器。[10 – 14] 它们需要一种吸收材料,吸收光以产生热载流子,然后将其转化为电能。透明导电氧化物 (TCO) 属于近零 (ENZ) 材料,似乎是完成此类任务的绝佳材料,因为它们可以在很宽的范围内吸收能量
彩色光学中心是晶格中的功能缺陷,在原本透明的钻石中吸收并发出光。它们具有有趣的物理特性,具有各种可能的应用,从量子通信到生物医学。这项工作旨在研究与SI-V中心相关的光电压的产生,以在与有机分子相互作用中使用。作品的部分任务是:1)熟悉有关材料和方法的推荐和对文献的熟悉。准备自己的重点概述,概述当前的艺术状态。2)设计合适的设置,并在SIV中心对纳米晶钻石薄层的SIV中心上的工作函数和光伏作为激发波长的函数。3)对具有不同厚度,不同表面修饰(氢,氧)的样品进行测量,作为时间和照明的功能。使用可调激光器来照亮样品并对波长400-800 nm进行测量。4)评估和比较各种样本系列的工作函数和光电压趋势。
1 1个外科系,凯克医学院,南加州大学,加利福尼亚州洛杉矶大学,美国,2病理学,凯克医学院,南加州大学,加利福尼亚州洛杉矶大学,美国,美国3干细胞生物学和再生医学,凯克医学,凯克医学院,南加州大学,加利福尼亚大学,加利福尼亚州,洛杉矶,加利福尼亚州,美国弗兰克大学,弗兰克大学,弗兰克大学,弗兰克大学,弗兰克大学,弗兰克大学, 5转化基因组学,凯克医学院,南加州大学,加利福尼亚州洛杉矶大学,美国6个儿科,波士顿儿童医院,波士顿,马萨诸塞州波士顿,马萨诸塞州,美国,遗传学系7,哈佛医学院,马萨诸塞州波士顿,马萨诸塞州,马萨诸塞州,美国马萨诸塞州波士顿,美国,美国,凯克医学院,苏克,医学院,苏克,苏克大学,苏克,苏克,苏克,苏尔兰州,苏尔兰州,苏尔兰大学,统治美国东北奥马哈
外部腔内波长激光,其特征在于其特殊的时间连贯性和广泛的调谐范围,它是尖端的纤维感应,例如纤维传感,刺激和光谱镜的至关重要的光源。光学通信技术的新兴增长升级了对线宽和广泛调整范围狭窄的激光器的需求,从而促进了外部波长 - 腔内扫描二极管激光及其多样化应用的迅速发展。本文全面地介绍了这些激光器的配置和操作原理,并对其发展状态进行了深入的审查,专门针对那些具有狭窄线宽和较宽调整范围的人。目的是为参与波长激光的开发和应用的研究人员提供宝贵的参考。