研究了激光波长对原子探针断层扫描(APT)中元素组成分析中精度的影响。系统比较了三种不同的商业原子探针系统 - LEAP 3000 x HR,LEAP 5000 XR和LEAP 6000 XR-用于研究较短激光波长的锡模型涂层,尤其是在深紫外线(DUV)范围内,对蒸发行为的影响。发现的结果表明,较短波长的使用提高了元素组成的准确性,而主潮具有相似的电场强度。因此,热效应减少,进而提高质量分辨能力。这项研究的一个重要方面包括估计不同工具的能量密度比。波长的降低伴随着由于激光斑点尺寸较小而导致的能量密度增加。此外,还研究了检测器技术的进步。最后,确定探测器的死时间,并评估了死区,以调查具有LEAP 6000 XR的氮化物测量中的离子堆积行为。
在线存放在白玫瑰研究中的重用项目受版权保护,除非另有说明,否则保留所有权利。可以下载和/或印刷供私人学习,或者按照国家版权法所允许的其他行为。发布者或其他权利持有人可以允许进一步复制和重新使用全文版本。这是通过该项目的白玫瑰研究在线记录的许可信息来指示的。
1 光的连续变量量子理论 3 1.1 量子谐振子..................................................................................................................................................................4 1.1.1 哈密顿量的量子化..................................................................................................................................................................4 1.1.2 海森堡不确定性原理和算子归一化.................................................. 5 1.2 光的模态表示..................................................................................................................................................................................6 1.2.1 经典光.................................................................................................................................................................................. . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.5.1 具有连续变量的图状态的理论框架 . ...
彩色光学中心是晶格中的功能缺陷,在原本透明的钻石中吸收并发出光。它们具有有趣的物理特性,具有各种可能的应用,从量子通信到生物医学。这项工作旨在研究与SI-V中心相关的光电压的产生,以在与有机分子相互作用中使用。作品的部分任务是:1)熟悉有关材料和方法的推荐和对文献的熟悉。准备自己的重点概述,概述当前的艺术状态。2)设计合适的设置,并在SIV中心对纳米晶钻石薄层的SIV中心上的工作函数和光伏作为激发波长的函数。3)对具有不同厚度,不同表面修饰(氢,氧)的样品进行测量,作为时间和照明的功能。使用可调激光器来照亮样品并对波长400-800 nm进行测量。4)评估和比较各种样本系列的工作函数和光电压趋势。
激光直接写作采用多光子3D聚合化是一种科学和工业工具,用于各个领域,例如微观,医学,超材料,可编程材料等,由于高吞吐量和良好的特征融合到数百nm。技术适用性的某些局限性从照片牙质特性中出现,但是随着光激发条件的变化,任何物质修改都会强烈影响其可打印性。在这里,我们使用低峰功率激光振荡器提出了非波长的3D聚合。使用高脉冲重复率和快速激光直接写作,用于从SZ2080 TM照相抗体中推进添加剂制造,而无需任何照相机。波长为517 nm,780 nm和1035 nm的波长被证明适合于高达10 5 µm/s的写作速度,也适用于产生300 nm聚合的特征。杂交材料中有机无机比率的变化会导致动态制造窗口的变化和减少,但并没有禁止光结构。由于局部加热实现有效的3D打印,因此可以实现每个焦点的控制能量沉积。这种空间选择性的光化交叉链接扩大了非光敏感材料的光学制造能力。
该文章的此版本已被接受以供出版,在同行评审(适用)之后(如果适用),并且受Springer Nature的AM使用条款的约束,但不是记录的版本,并且不反映后接受后的改进或任何更正。记录版本可在线获得:https://doi.org/10.1038/s41564-024-01656-3
自2001年首次示威以来[Gol'tsman等。,应用。物理。Lett。 79,705–707(2001)],超导纳米线单光子探测器(SNSPDS)见证了二十年的伟大发展。 SNSPD是大多数现代量子光学实验中的选择检测器,并且正在慢慢地进入其他光子含有光学的光学领域。 到目前为止,在几乎所有实验中,SNSPD都被用作“二进制”检测器,这意味着它们只能区分0和> = 1个光子,并且丢失了光子数信息。 最近的研究表明,原理证明光子数分辨率(PNR)SNSPDS计数为2-5个光子。 在各种量子式实验中,高度要求光子数分解的能力,包括Hong – Ou-Mandel干扰,光子量子计算,量子通信和非高斯量子态制备。 特别是,由于高质量的半导体量子点(QDS)的可用性,波长850-950 nm处的PNR检测器引起了极大的关注[Heindel等。 ,adv。 选择。 Photonics 15,613–738(2023)]和高性能基于铯的量子记忆[Ma等。 ,J。Opt。 19,043001(2017)]。 在本文中,我们演示了基于NBTIN的SNSPD,具有> 94%的系统检测效率,一个光子的低于11 PS的时间抖动,以及2个光子的低于7 PS。 更重要的是,我们的探测器使用常规的低温电读数电路最多可以解决7个光子。Lett。79,705–707(2001)],超导纳米线单光子探测器(SNSPDS)见证了二十年的伟大发展。 SNSPD是大多数现代量子光学实验中的选择检测器,并且正在慢慢地进入其他光子含有光学的光学领域。 到目前为止,在几乎所有实验中,SNSPD都被用作“二进制”检测器,这意味着它们只能区分0和> = 1个光子,并且丢失了光子数信息。 最近的研究表明,原理证明光子数分辨率(PNR)SNSPDS计数为2-5个光子。 在各种量子式实验中,高度要求光子数分解的能力,包括Hong – Ou-Mandel干扰,光子量子计算,量子通信和非高斯量子态制备。 特别是,由于高质量的半导体量子点(QDS)的可用性,波长850-950 nm处的PNR检测器引起了极大的关注[Heindel等。 ,adv。 选择。 Photonics 15,613–738(2023)]和高性能基于铯的量子记忆[Ma等。 ,J。Opt。 19,043001(2017)]。 在本文中,我们演示了基于NBTIN的SNSPD,具有> 94%的系统检测效率,一个光子的低于11 PS的时间抖动,以及2个光子的低于7 PS。 更重要的是,我们的探测器使用常规的低温电读数电路最多可以解决7个光子。79,705–707(2001)],超导纳米线单光子探测器(SNSPDS)见证了二十年的伟大发展。SNSPD是大多数现代量子光学实验中的选择检测器,并且正在慢慢地进入其他光子含有光学的光学领域。到目前为止,在几乎所有实验中,SNSPD都被用作“二进制”检测器,这意味着它们只能区分0和> = 1个光子,并且丢失了光子数信息。最近的研究表明,原理证明光子数分辨率(PNR)SNSPDS计数为2-5个光子。在各种量子式实验中,高度要求光子数分解的能力,包括Hong – Ou-Mandel干扰,光子量子计算,量子通信和非高斯量子态制备。特别是,由于高质量的半导体量子点(QDS)的可用性,波长850-950 nm处的PNR检测器引起了极大的关注[Heindel等。,adv。选择。Photonics 15,613–738(2023)]和高性能基于铯的量子记忆[Ma等。,J。Opt。19,043001(2017)]。在本文中,我们演示了基于NBTIN的SNSPD,具有> 94%的系统检测效率,一个光子的低于11 PS的时间抖动,以及2个光子的低于7 PS。更重要的是,我们的探测器使用常规的低温电读数电路最多可以解决7个光子。通过理论分析,我们表明,通过提高我们读取电路的信噪比和带宽,可以进一步改善所证明的检测器的PNR性能。我们的结果对于光学量子计算和量子通信的未来都是有希望的。
可见频谱中能够动态持续发光(PERS)的抽象材料在显示,生物传感和信息安全性的应用中受到了极大的追捧。然而,很少实现具有可检测和激发波长依赖性特征的SERL材料。在此,存在一个非杂色化合物CAGA X O 4:BI(x <2),显示超长的色彩可调式SERL。可以通过改变激发波长来调整持续的发射波长,从而使可见光谱内的绿色到橙色区域的动态色彩调制。理论计算与实验观测相结合,用于阐明各种缺陷状态的热力学电荷跃迁,从而提供了对BI 3 + Emitters,陷阱和多色PERS之间关系的见解。此外,还展示了可颜色可调的SERL材料和富裕设备的实用性,以在视觉感知看不见的紫外线光,多色显示,信息加密和反爆炸。这些发现创造了新的机会,可以为各种应用开发具有动态控制的SERL的智能光电材料。
近年来卫星发射数量的快速增长以及未来十年计划发射的压力要求提高空间领域感知设施的效率。光学设施是全球空间领域感知能力的重要组成部分,但传统光学望远镜仅限于在相对较短的黄昏时期观测卫星。在这项工作中,我们探索将这个运行时间扩大到一整天,以大幅改善单个站点的观测机会。我们使用 Huntsman 望远镜探路者(一种主要使用自备组件制造的仪器)和佳能远摄镜头探索白天的空间领域感知观测。我们报告了 81 颗 Starlink 卫星的光度光变曲线,从太阳高度 20 度到中午不等。发现 Starlink 卫星特别明亮,亮度为 3 . 6 ± 0 . 05mag,σ = 0 . 6 ± 0 . 05mag(斯隆 r'),或比黄昏条件亮 ∼ 11 倍。与理论模型进行比较后,我们得出结论,这种令人惊讶的观测亮度是由于轨道卫星下方的地球反照所致。最后,我们讨论了亨茨曼望远镜探路者使用日间光变曲线探测卫星轨道方向变化的潜力。
定向耦合器(DCS)在具有多功能应用(例如电源拆分,调制和波长施用)多路复用等多功能应用中起关键作用。然而,由于分散而引起的固有波长依赖性对使用DC构成了带宽的限制。尤其是50:50 DC仅在一个波长下实现此比率。这种意外的耦合变化显着降低了许多硅光子应用的性能。在寻求实现宽带50:50 DC时,已经探索了各种计划。值得注意的是,已经提出了基于模式进化的绝热DC,其中输入波导中的光在DC中的均匀或奇数模式在50:50分裂[1]中均具有均匀或奇数。绝热DC是固有的较长设备,可能会超过300 µm,并且经常表现出高度损失。另一种设计策略采用了非对称DC,利用不同宽度的波导来降低波长依赖性。尽管具有潜力,但这些设计对线宽变化高度敏感,并且制造不耐症[2]。实现宽带功能和制造公差在硅光子学中构成了重大挑战,这主要是由于纳米级维度和高指数对比度[3]。最近,弯曲的DC(不对称DC的子集)已成为可行的解决方案[4]。他们提供宽带耦合,这是一个相对紧凑的足迹,同时保持较高的制造耐受性。通过弯曲波导的不对称引入消除了对不同波导宽度的需求,因此解决了在具有不对称波导宽度的DC中观察到的制造灵敏度。由于不对称性,不再是不可能的,与在对称的直接直流中耦合相反,这会导致非单调耦合与波长,并且可以设计为实现最大值