sophorolipids,源自微生物(例如Starmerella bombicola)具有独特的表面活性和生物活性特性的微生物的糖脂生物表面活性剂,在化妆品,药品和生物修复中具有潜在的应用。但是,野生型Sophorolipids的结构可变性有限限制其特性和应用。为了解决这个问题,代谢工程工作已允许创建分子组合。在这项研究中,我们通过化学修饰的微生物产生的spolosides迈出了一步,这是由工程的S. bombicola生产的。合成了二十四个新的Sophoroside衍生物,包括在氮原子上具有不同烷基链长(乙基到八甲苯二烷基)及其相应的季铵盐的舍基胺。此外,将六个不同的微生物产生的糖脂生物表面活性剂氢化,以实现完全饱和的脂质尾巴。These derivatives, along with microbially produced glycolipids and three benchmark biosurfactants (di-rhamnolipids, alkyl polyglucosides, cocamidopropyl betaine), were assessed for antimicrobial activity against bacteria ( Bacillus subtilis, Staphylococcus aureus, Listeria monocytogenes, Escherichia coli,铜绿假单胞菌)和酵母(白色念珠菌)。的结果表明,微生物产生的糖脂,例如soperosides,酸性柔脂和酸性葡萄糖脂,表现出针对测试生物的选择性抗菌活性。相反,乳酸柔脂,舍罗胺和季铵盐表现出广泛的抗菌活性。n-辛基,N-二烷基和N-二十烷基衍生物的最低抑制浓度最低,范围为0.014至20.0 mg ml-1。这项研究证明了周到的生物技术的潜在协同作用,并针对精确量身定制的糖脂生物表面活性剂的化学有针对性的化学,以满足跨应用程序的特定需求。
大多数生物表面活性剂产生的微生物都是碳氢化合物降解剂。进行了研究,以分离和表征尼日利亚原油污染土壤中产生生物表面活性剂的细菌。从原油污染的土壤中分离出产生生物表面活性剂的细菌。原油污染的土壤,并进行了理化分析。细菌,并筛选出生物表面活性剂的产生。使用形态学,生化和分子方法鉴定出表现出产生生物表面活性剂能力的生物体。土壤的理化参数显示为pH 6.9,电导率为71.5,2.55%碳,2.016%的氮和5.98%的磷。生物表面活性剂测试的值表明生物表面活性剂的生产阳性。两个选定生物S2和S13的乳液指数的百分比分别为59.09%和57.14%。来自分子鉴定的爆炸分析表明,S2和tsukamurella inochensis的孤立生物是S13的S2和Tsukamurella inochensis的Gordonia Alkanivorans。这项研究表明,在原油污染的土壤中,孤立的生物表面活性剂产生的细菌很丰富。
摘要:通过表面活性剂介导的策略制备了分层ZSM5和Y沸石,NH 4 OH改变了处理的持续时间和CTAB表面活性剂的量,并作为关键胶束浓度的参考倍数(CMC)。使用粉末X射线衍射,N 2吸附等温线在-196℃以及SEM和TEM显微镜表征。在80°C的乙酸盐中用乙酸盐的弗里德尔 - 工艺酰化评估了催化性能。碱性表面活性剂介导的治疗对两个沸石的影响不同。对于ZSM5,CTAB分子聚集体几乎无法在中型毛孔内扩散,主要导致晶间的中源性和外部表面积增加,而没有阳性催化影响。另一方面,对于大孔沸石,CTAB分子聚集体很容易扩散并促进胶束周围晶体单位的重排,从而导致毛孔的肿大,即晶体内孔隙度。用CTAB量为CMC的32倍处理了12小时的优化基于Y的样品,显示出添加较高量的表面活性剂时未观察到的产品产量和速率常数的增加。在400℃的热处理上,用消费催化剂的再利用显示出约90%的再生效率,显示了改良催化剂的良好潜力。
1卫生科学学院,国家和卡普迪斯特里大学雅典大学,Panepistimiopolis,15771年,希腊Zografou; elminasait@pharm.uoa.gr(E.-M.S.); natpippa@pharm.uoa.gr(n.p。); ppapakyr@pharm.uoa.gr(P.P.)2化学学院,化学跨学科项目(CHIP),卡梅利诺大学,麦当娜·德尔·卡塞里(Madonna Delle Carceri),意大利卡梅利诺(Camerino)62032; diego.perinelli@unicam.it(D.R.P.); giulia.benacucina@unicam.it(g.b。)3聚合物和碳材料中心,波兰科学院,34,M。Curie-Skłodowskiejst,41-819 Zabrze,波兰; aforys@cmpw-pan.pl(A.F.); barbara.trzebicka@cmpw-pan.edu.pl(B.T.)4生物学实验室,基础医学系,医学院,国家和雅典Kapodistrian大学,希腊11527雅典; nlagopati@med.uoa.gr(N.L.); mgazouli@med.uoa.gr(M.G.)5雅典学院生物医学研究基金会,希腊雅典11527年6理论和物理化学研究所,国家希腊研究基金会,瓦西洛斯·康斯坦丁·康斯坦丁乌大街48号,希腊雅典11635年; pispas@eie.gr *通信:valsami@pharm.uoa.gr
1东北生物技术网络(Renorbio),佩南布科联邦乡村大学,Rua Dom Manuel de Medeiros,Recife 52171-900,PE,巴西; renatabiology2015@gmail.com 2环境过程开发(PPGDPA),Pernambuco天主教大学,Rua do do dopríncipe,n。 526,Boa Vista,Recife 50050-900,PE,巴西; Juliovasconcelos05@gmail.com 3高级技术与创新研究所(IATI),Rua Potira de Brito,N.216,Boa Vista,Recife 50050-900,PE,巴西; hugo_morais15@hotmail.com(H.M.M.); leonie.sarubbo@unicap.br(L.A.S.)4卫生与生命科学学院,佩南布科天主教大学,鲁阿·杜·普里普,n。 526,RECIFE 50050-900,PE,巴西; sergio.almeida@unicap.br 5 ICAM科技学校,佩南布科天主教大学,Rua do dopríncipe,n。 526,Boa Vista,Recife 50050-900,PE,巴西 *通信:Juliana.luna@unicap.br;电话。: +55-81-9-9989-1980
表面活性代谢物(例如生物表面活性剂)通常是细胞外产生的,因为这些分子具有可变的两亲性结构,可减少sur的面部和界面张力(Twigg等人2021)。这些两亲性结构具有不同的极性作用,因为它们由不同的亲水性和水力恐惧症部分组成,它们基于结构和功能对生物表面活性剂进行分类。这些两亲性结构的疏水部分源自脂肪酸或其衍生物,而亲水性裂缝率是源自肽,碳水化合物,脂肪醇,羧酸,羧酸,碳水化合物,碳水化合物,氨基酸,氨基酸或磷酸盐或磷酸盐或磷酸盐(Eldin等。 2019)。 细菌生物表面活性剂具有显着的乳化性和表面正确的联系,使其在各种环境应用中尤为重要。 细菌生物表面活性剂的毒性和生物降解性降低使它们比合成表面活性剂更有利2019)。细菌生物表面活性剂具有显着的乳化性和表面正确的联系,使其在各种环境应用中尤为重要。细菌生物表面活性剂的毒性和生物降解性降低使它们比合成表面活性剂更有利
PG细胞具有比报道的光藻系统更高的电输出。对于D-木糖+MB+Brij-35+NALS PG,在690.00 mV下观察到光电位。在D-木糖+MB+Brij-35+NALS PG中观察到235.00μA的光电流。通过改变PG中的各种参数来研究太阳能的影响。在没有光的情况下,在120.00分钟以120.00分钟发现了D-木糖+MB+Brij-35+NALS PGS性能。此值相对较高,比最近报道的含有DSS- Tatrazine EDTA的PG(100.0分钟。),Lauryl硫酸钠 - 靛蓝胭脂红染料 - 形成酸(115分钟。),带有不同电极和细胞尺寸的Bromo Cresol绿色染料(70.0分钟)PGS由Rathore Jayshree和Mohan Lal(2018),Koli等人开发。(2021)和Koli等。(2022)。有效的系统,如果达到所需的成本降低和整体效率的程度,可能会取代市场中现有的太阳能电池
摘要:合成化学表面活性剂(SCSS)是从化石燃料前体合成的一组用途的两亲性化学物质量,这些化石燃料前体已在各种工业应用中发现使用。它们的全球用法估计每年超过1500万吨,这导致环境破坏和对人类和其他生物的潜在毒理学影响均未减弱。当前的社会挑战以确保环境保护并减少对有限资源的依赖,导致人们对可持续和环保替代品(例如生物性活性剂)的需求增加,以取代这些有毒的污染物。生物表面活性剂是可生物降解,无毒的,并且通常在环境上兼容的两亲性化合物。尽管微生物生物表面活性剂替换SCSS的潜力巨大,但与SCS相比,限制其商业化的主要挑战限制其商业化的收益率和生产成本的大量成本。在这篇综述中,我们讨论了SCSS的释放,废水处理厂(WWTPS)是其释放到海洋的主要点来源,然后我们深入研究了这些污染物对海洋生物体和人类的后果。然后,我们探索微生物生物表面活性剂作为SCSS的替代品,重点是鼠尾草脂质,并以对当前和未来的工作进行商业化微生物生物性生物性侵蚀剂的一些观点结束。
摘要简介:在过去的几十年中,微生物多药耐药性(MDR)已成为许多药物方案中的关键疗法之一。由于这种现象,制药行业,畜牧业和农业行业都受到了某种影响。材料和方法:使用Schrodinger Maestro 9.1软件程序进行了具有指定配体的分子对接研究。蛋白质制备向导用于制备选定的受体。结果:对接模拟揭示了蛋白质配体相互作用曲线中许多元素的重要性,例如氢键,亲脂接触,金属相互作用,PI-PI相互作用和PI-cation相互作用。评分函数是在计算化学和分子建模中使用的快速近似数学算法,以预测两个分子对接后两个分子之间非共价接触的强度。结论:这项研究的发现可能有助于理解这些赋形剂可能的P-GP抑制活性的分子机制。目前的发现将通过使用任何P-gp底物药物分子以及体外和体内研究的配方开发来进一步验证,以获得最终确认。