微切口经常用于空间机制,以提供遥测或提供正面指示所需位置或功能的正面指示,例如开放,近距离,锁上,闩锁,闩锁,锁定,旅行末端,参考位置,参考位置以及不同的机制应用。依赖电力技术的当前开关不是很可靠,并且对安装方向,对热梯度敏感,并且对操作周期数量有限,这对于长寿命应用,发射振动和冲击负荷是一个问题。依赖接触以及继电器芦苇的微切口仍然提供了其他电阻扭矩,这些扭矩必须由机理执行器克服,对汽车缘有负面影响。在本文中,Cedrat Technologies介绍了基于涡流传感器(ECS)技术的非接触式微型开关设备的设计和测试结果,并具有嵌入式空间分级的调理电子设备。在ESA R&D太空计划下实现了这一开发,以开发微型开关设备不影响机制的可靠性,不增加额外的质量或任何电阻扭矩,并且主要目的是为具有大量量的空间应用实现很高的成本效益,例如新的空间星座。已经实现了两种传感配置的设计,一种用于轴向运动,第二个用于切向运动。提出了一批工程资格模型的测试结果,用于感应精度,空间环境温度条件,发射振动和冲击测试,航天器电磁兼容性(EMC)测试以及辐射环境测试高达300Krad。
虽然测量电压通常很简单,因为它可以在许多点准确测量,可以直接与大多数控制器接口,并且可以在不影响系统的情况下完成,但测量电流通常并不那么简单。正如我们在大学里学到的,每当我们测量电流时,我们通常必须将一个外部感测元件“插入”到系统中以达到测量的目的。要做到这一点,既要测量准确,又要占用很少的 PCB 空间和很少的组件,既要增加很少的成本,又要保留原始系统性能,这成为设计师面临的挑战。大多数现有方法都需要仔细权衡。一些电机应用甚至推动转向复杂的“无传感器”控制,以节省可观的传感器成本和 PCB 空间 - 并能够在广泛的环境温度环境或具有挑战性的电离/磁场环境中运行。这些方法仍然面临着来自软件模型和复杂控制环路算法的时序、延迟和准确性方面的挑战。本文将展示一种新的、高度集成的、“无损”的局部电流感测方法,该方法解决了许多挑战。首先,让我们从一些传统方法的背景开始。
轴向和切向传感头配置 所提出的微开关的传感原理基于涡流测量原理,需要在空间 PCB 上安装发射和传感线圈。发射线圈在远处的目标表面上产生涡流,并在高频下产生小电激励,通常在 500 kHz 至 5 MHz 之间可调。该信号基于 Colpitts 振荡器,发射线圈是电流槽的一部分,因此发射功能需要非常低的功率来提供所需的高频磁场振荡。
VREF 输出电压 Vref 与 IP 输入电流值无关 2.5 V 差值零点偏差 Voq-VREF IP=0A ±5 mV 灵敏度 Sens -2.5A
描述 Honeywell Zephyr™ HAF 系列传感器提供数字接口,用于读取指定满量程流量和补偿温度范围内的气流。隔热加热器和温度传感元件可帮助这些传感器快速响应空气或气体流量。Zephyr 传感器设计用于测量空气和其他非腐蚀性气体的质量流量。标准流量范围为 10 SLPM、15 SLPM、20 SLPM、50 SLPM、100 SLPM、200 SLPM 和 300 SLPM,可提供自定义流量范围。这些传感器经过全面校准,并通过板载专用集成电路 (ASIC) 进行温度补偿。HAF 系列 >10 SLPM 在 0°C 至 50°C [32°F 至 122°F] 的校准温度范围内进行补偿。最先进的基于 ASIC 的补偿提供数字 (I2C) 输出,响应时间为 1 毫秒。这些传感器采用热传递原理测量空气质量流量。它们由微桥微电子和微机电系统 (MEMS) 组成,其中的温度敏感电阻沉积有铂和氮化硅薄膜。MEMS 传感芯片位于精确且精心设计的气流通道中,可对流量提供可重复的响应。Zephyr 传感器为客户提供增强的可靠性、高精度、可重复的测量以及定制传感器选项以满足许多特定应用需求的能力。坚固的外壳与稳定的基板相结合,使这些产品非常坚固。它们是根据 ISO 9001 标准设计和制造的。
描述 Honeywell Zephyr™ HAF 系列传感器提供数字接口,用于读取指定满量程流量和补偿温度范围内的气流。隔热加热器和温度传感元件可帮助这些传感器快速响应空气或气体流量。Zephyr 传感器设计用于测量空气和其他非腐蚀性气体的质量流量。标准流量范围为 10 SLPM、15 SLPM、20 SLPM、50 SLPM、100 SLPM、200 SLPM 和 300 SLPM,可提供自定义流量范围。这些传感器经过全面校准,并通过板载专用集成电路 (ASIC) 进行温度补偿。HAF 系列 >10 SLPM 在 0°C 至 50°C [32°F 至 122°F] 的校准温度范围内进行补偿。最先进的基于 ASIC 的补偿提供数字 (I2C) 输出,响应时间为 1 毫秒。这些传感器采用热传递原理测量空气质量流量。它们由微桥微电子和微机电系统 (MEMS) 组成,其中的温度敏感电阻沉积有铂和氮化硅薄膜。MEMS 传感芯片位于精确且精心设计的气流通道中,可对流量提供可重复的响应。Zephyr 传感器为客户提供增强的可靠性、高精度、可重复的测量以及定制传感器选项以满足许多特定应用需求的能力。坚固的外壳与稳定的基板相结合,使这些产品非常坚固。它们是根据 ISO 9001 标准设计和制造的。
描述 Honeywell Zephyr™ HAF 系列传感器提供数字接口,用于读取指定满量程流量和补偿温度范围内的气流。隔热加热器和温度传感元件可帮助这些传感器快速响应空气或气体流量。Zephyr 传感器设计用于测量空气和其他非腐蚀性气体的质量流量。标准流量范围为 10 SLPM、15 SLPM、20 SLPM、50 SLPM、100 SLPM、200 SLPM 和 300 SLPM,可提供自定义流量范围。这些传感器经过全面校准,并通过板载专用集成电路 (ASIC) 进行温度补偿。HAF 系列 >10 SLPM 在 0°C 至 50°C [32°F 至 122°F] 的校准温度范围内进行补偿。最先进的基于 ASIC 的补偿提供数字 (I2C) 输出,响应时间为 1 毫秒。这些传感器采用热传递原理测量空气质量流量。它们由微桥微电子和微机电系统 (MEMS) 组成,其中的温度敏感电阻沉积有铂和氮化硅薄膜。MEMS 传感芯片位于精确且精心设计的气流通道中,可对流量提供可重复的响应。Zephyr 传感器为客户提供增强的可靠性、高精度、可重复的测量以及定制传感器选项以满足许多特定应用需求的能力。坚固的外壳与稳定的基板相结合,使这些产品非常坚固。它们是根据 ISO 9001 标准设计和制造的。
描述 Honeywell Zephyr™ HAF 系列传感器提供数字接口,用于读取指定满量程流量和补偿温度范围内的气流。隔热加热器和温度传感元件可帮助这些传感器快速响应空气或气体流量。Zephyr 传感器设计用于测量空气和其他非腐蚀性气体的质量流量。标准流量范围为 10 SLPM、15 SLPM、20 SLPM、50 SLPM、100 SLPM、200 SLPM 和 300 SLPM,可提供自定义流量范围。这些传感器经过全面校准,并通过板载专用集成电路 (ASIC) 进行温度补偿。HAF 系列 >10 SLPM 在 0°C 至 50°C [32°F 至 122°F] 的校准温度范围内进行补偿。最先进的基于 ASIC 的补偿提供数字 (I2C) 输出,响应时间为 1 毫秒。这些传感器采用热传递原理测量空气质量流量。它们由微桥微电子和微机电系统 (MEMS) 组成,其中的温度敏感电阻沉积有铂和氮化硅薄膜。MEMS 传感芯片位于精确且精心设计的气流通道中,可对流量提供可重复的响应。Zephyr 传感器为客户提供增强的可靠性、高精度、可重复的测量以及定制传感器选项以满足许多特定应用需求的能力。坚固的外壳与稳定的基板相结合,使这些产品非常坚固。它们是根据 ISO 9001 标准设计和制造的。
描述 Honeywell Zephyr™ HAF 系列传感器提供数字接口,用于读取指定满量程流量和补偿温度范围内的气流。热隔离加热器和温度传感元件有助于这些传感器对空气或气体流量做出快速响应。Zephyr 传感器设计用于测量空气和其他非腐蚀性气体的质量流量。标准流量范围为 10 SLPM、15 SLPM、20 SLPM、50 SLPM、100 SLPM、200 SLPM 和 300 SLPM,可提供自定义流量范围。传感器经过完全校准,并通过板载专用集成电路 (ASIC) 进行温度补偿。HAF 系列 >10 SLPM 在校准温度范围 0°C 至 50°C [32°F 至 122°F] 内进行补偿。最先进的 ASIC 补偿提供数字 (I2C) 输出,响应时间为 1 毫秒。这些传感器采用热传递原理测量空气质量流量。它们由微桥微电子和微机电系统 (MEMS) 组成,带有沉积有铂和氮化硅薄膜的温度敏感电阻。MEMS 传感芯片位于精确且精心设计的气流通道中,可提供对流量的可重复响应。Zephyr 传感器为客户提供增强的可靠性、高精度、可重复的测量以及定制传感器选项以满足许多特定应用需求的能力。坚固的外壳与稳定的基板相结合,使这些产品极其坚固耐用。它们是按照 ISO 9001 标准设计和制造的。
在过去几十年中,多孔媒体的流量和对流传热方面的基本和应用研究受到了学术界和工业研究人员的关注。这是由于该研究领域在广泛的工程应用中的重要性,该应用涉及多孔材料,或者可以作为多孔介质建模。其中包括地理应用(即增强的地热系统和碳存储),生物系统,太阳能系统,金属泡沫热交换器,多孔燃烧器,航空航天系统的蒸腾冷却,电子设备的热管理以及聚合物电解质燃料电池(PEFCS)。应用的其他示例包括干燥技术,催化反应堆,组织置换,药物输送,晚期医学成像和用于组织工程的多孔脚手架。广泛的讽刺应用鼓励我们在该领域工作和研究多年,我们通过其中了解了有关多孔材料中对流传热的大量信息。在该领域进行了彻底的研究之后,我们发现在多孔媒体中在对流领域执行的数学,数字和实验方法和方法有很多,并且在此问题中现有书籍和出版物已经包括在内。尽管如此,在多孔媒体中(例如,多孔媒体中的热通量分叉),高级工程应用(例如燃料电池)和新的数值方法(例如,lattice boltzmann方法)尚未包含在现有的书籍中。因此,本书试图介绍和讨论多孔媒体中对流传热的这些新方面,最集中于实践方法及其高级应用。尽管我们已经做出了彻底的努力来涵盖多孔材料中对流的最重要和讽刺的方法,挑战和应用,但作者可能已经错过了一些方面。我们希望这本书为读者(学生,教授,科学家和工程师)提供实用的方法和应用,以及在多孔材料中对流传热领域中最富有成果的信息。总的来说,拟议中的书应该由3个部分和17章组成。第一节专门介绍了多孔媒体中对流(自然和强迫)的基础。第二节分配给了多孔介质的对流主题,其中将讨论多孔介质中的芯吸和干燥,双分散多孔介质,孔隙规模分析和晶格鲍尔茨曼方法的对流。第三节专门针对多孔媒体中对流的最新且有趣的应用。因此,在本节中,提出了新发现的工业应用程序。
