2-1 入口 OV 浓度低于 100 ppm 的气体催化氧化控制现场研究总结 15 2-2 使用 ARI 系统测试的进料流成分(单位:ppm) 18 2-3 使用 ARI 系统对不同混合物的破坏效率 18 2-4 入口浓度和温度对 ARI 系统破坏效率的影响 20 2-5 在沃特史密斯空军基地使用 ARI 的流化床催化焚烧炉对三氯乙烯进行的催化破坏效率 20 2-6 沃特史密斯空军基地对 ARI 系统的催化氧化测试结果总结 21 2-7 在麦克莱伦空军基地使用 ARI 的流化床催化焚烧炉进行的流化床催化 OV 焚烧研究结果 22 2-8催化氧化成本 28 2-9 控制入口 OV 浓度低于 100 ppm 的气体的蓄热式热氧化现场研究总结 30 2-10 路易斯安那太平洋公司位于阿拉巴马州汉斯维尔的 OSB 工厂的 Smith RTO 源测试结果 33 2-11 路易斯安那太平洋公司位于路易斯安那州乌拉尼亚的 OSB 工厂的 Smith RTO 源测试结果 33 2-12 数字设备公司 Smith RTO 系统测试结果,库比蒂诺 34 2-13 美孚化学公司 Smith RTO 系统测试结果,贝克斯菲尔德 35 2-14 新泽西州和加利福尼亚州的 Reeco 蓄热式热焚烧炉测试结果 38 2-15 Reeco 蓄热式热焚烧的成本效益 42 3-1 含氧气体浓度低于 100 ppm 的不可再生碳吸附现场研究总结ppm 入口 OV 浓度 48 3-2 维罗纳井场入口气体浓度 49 3-3 改进的吸附系统 54 3-4 MET-PRO KPR 系统现场数据 57 3-5 CADRE 吸附/焚烧系统现场研究总结,用于含有少于 100 ppm 入口 OV 浓度的气体 60 3-6 使用蒙特疏水性沸石的 OV 减排系统 65 3-7 HONEYDACS™ 系统的有机溶剂组成与效率 74 3-8 Dürr Industries 系统测试结果 76 3-9 Dürr 系统的比较运营成本 79 3-10 Dürr Industries 比较成本 80 3-11 Eisenmann 吸附系统现场安装 85 3-12 EcoBAC™ 系统现场数据90 3-13 按行业类型和处理材料划分的 EC&C 系统应用情况 91
2-1 入口 OV 浓度低于 100 ppm 的气体催化氧化控制现场研究总结 15 2-2 使用 ARI 系统测试的进料流成分(单位:ppm) 18 2-3 使用 ARI 系统对不同混合物的破坏效率 18 2-4 入口浓度和温度对 ARI 系统破坏效率的影响 20 2-5 在沃特史密斯空军基地使用 ARI 的流化床催化焚烧炉对三氯乙烯进行的催化破坏效率 20 2-6 沃特史密斯空军基地对 ARI 系统的催化氧化测试结果总结 21 2-7 在麦克莱伦空军基地使用 ARI 的流化床催化焚烧炉进行的流化床催化 OV 焚烧研究结果 22 2-8催化氧化成本 28 2-9 控制入口 OV 浓度低于 100 ppm 的气体的蓄热式热氧化现场研究总结 30 2-10 路易斯安那太平洋公司位于阿拉巴马州汉斯维尔的 OSB 工厂的 Smith RTO 源测试结果 33 2-11 路易斯安那太平洋公司位于路易斯安那州乌拉尼亚的 OSB 工厂的 Smith RTO 源测试结果 33 2-12 数字设备公司 Smith RTO 系统测试结果,库比蒂诺 34 2-13 美孚化学公司 Smith RTO 系统测试结果,贝克斯菲尔德 35 2-14 新泽西州和加利福尼亚州的 Reeco 蓄热式热焚烧炉测试结果 38 2-15 Reeco 蓄热式热焚烧的成本效益 42 3-1 含氧气体浓度低于 100 ppm 的不可再生碳吸附现场研究总结ppm 入口 OV 浓度 48 3-2 维罗纳井场入口气体浓度 49 3-3 改进的吸附系统 54 3-4 MET-PRO KPR 系统现场数据 57 3-5 CADRE 吸附/焚烧系统现场研究总结,用于含有少于 100 ppm 入口 OV 浓度的气体 60 3-6 使用蒙特疏水性沸石的 OV 减排系统 65 3-7 HONEYDACS™ 系统的有机溶剂组成与效率 74 3-8 Dürr Industries 系统测试结果 76 3-9 Dürr 系统的比较运营成本 79 3-10 Dürr Industries 比较成本 80 3-11 Eisenmann 吸附系统现场安装 85 3-12 EcoBAC™ 系统现场数据90 3-13 按行业类型和处理材料划分的 EC&C 系统应用情况 91
电转甲烷代表了将电能转化为化学能的一种创新方法。这种技术只有在将经济高效的电能来源与纯 CO 2 流相结合时才能真正成功。从这个角度来看,本文通过数值研究了一种创新工艺布局,该布局集成了用于燃烧固体燃料的流化床化学循环系统和基于可再生能源的电转甲烷系统。通过考虑一种煤和三种含水量不同的污水污泥作为燃料、以氧化锆为载体的 CuO 作为氧载体、通过水电解生产氢气以及以氧化铝为载体的 Ni 作为甲烷化催化剂来评估工艺性能。通过考虑部分产生的 CH 4 最终可以燃烧以干燥高水分含量的燃料来评估该工艺的自热可行性。最后,通过考虑仅使用来自可再生能源的电能,评估了所提出的工艺用作储能系统的能力。关键词:火力发电厂、化学循环燃烧、
微胶囊化作为一种掩味技术,已得到广泛应用,尤其在制药和功能性食品行业中,它能够提高消费者对苦味或不良口味成分的接受度。微胶囊化技术涵盖多种方法,例如热熔挤出、凝聚法、喷雾干燥、包合络合和流化床包衣,这些方法在掩味和活性化合物稳定性方面均具有独特的优势。本文探讨了影响包封效率的关键参数——聚合物浓度、芯壳比、固化条件以及在药物递送和营养保健品中的应用。微胶囊化是一种有效的策略,但其自身也存在局限性,例如可用的包封材料、监管挑战和规模化问题。未来的发展方向包括可持续的包封产品、新方法以及在个人食品中的应用。优化这些参数在改善健康相关产品的适口性方面具有巨大的潜力。
摘要:流化床反应器中 CaCO 3 的循环碳化-煅烧不仅提供了捕获 CO 2 的可能性,而且可以同时用于热化学能量存储 (TCES),这一特性将在未来发挥重要作用,因为不可调度可变发电(例如风能和太阳能)的份额将不断增加。本文对同时进行 TCES 和 CO 2 捕获的工业规模钙循环 (CaL) 工艺进行了技术经济评估。该工艺假定通过出售可调度电力和向某个附近的排放者提供 CO 2 捕获服务来获利(即不考虑 CO 2 的运输和储存)。因此,该工艺与附近的另外两个设施相连:一个可再生的不可调度能源,用于为储存器充电;一个工厂,用于捕获烟气流中的 CO 2,同时释放储存的 CO 2 并产生可调度的电力。该工艺可以在室温下长期储存而不会产生任何显著的能量损失,本文根据特定边界条件下的给定每日能量输入来确定其尺寸,这些边界条件要求充电部分每天稳定运行 12 小时,而放电部分每天 24 小时提供稳定输出。先计算不同工艺要素的相互耦合质量和能量平衡,然后确定主要工艺设备的尺寸,最后通过文献中广泛使用和验证的成本函数计算该工艺的经济性。通过盈亏平衡电价 (BESP)、回收期 (PBP) 和每吨二氧化碳捕获成本来评估该工艺的经济可行性。本研究不包括可再生能源的成本,但评估了其如果纳入系统对工艺成本的潜在影响。还评估了计算成本对主要工艺和经济参数的敏感性。结果表明,根据最现实的经济预测,不同规模的工厂的 BESP 成本在 141 至 -20 美元/MWh 之间,使用寿命为 20 年。当将同一过程评估为碳捕获设施时,其成本在 45 至 -27 美元/吨 CO 2 捕获之间。流化床反应器的投资成本占计算资本支出的大部分,而提高碳酸化器转化率被认为是降低全球成本的一项重要技术目标。
虽然这项技术尚未在太空中应用,但已在地球上进行过多次模拟现场测试。2008 年,首次月球 ISRU 表面操作模拟现场测试在夏威夷由 NASA、加拿大航天局 (CSA) 和德国空气和空间研究中心 (DLR) 开发的场地进行 [5]。这次测试的目的是展示原型硬件和端到端运行的集成系统的操作,该系统具有以下功能:挖掘材料、生产氧气和储存产品 [5]。其中一个原型系统是洛克希德·马丁宇航公司的 Precursor ISRU 月球氧气试验台 (PILOT),它使用翻滚反应器混合和加热风化层 [5]。另一个测试的原型是 NASA 的 ROxygen,它使用垂直反应器而不是像 PILOT 那样的旋转反应器。垂直反应器与流化床和内部螺旋钻一起使用 [5]。在试验中,PILOT 完成了六次反应堆操作,而 ROxygen 完成了五次。由于模拟现场试验之前系统验证有限,两个系统都未能成功电解提取的水。然而,当用去离子水进行测试时,其他系统功能是有效的 [5]。
安卡-库斯(Anca-Couce),安德烈斯(Andrés);伯格,卢克;庞格拉茨,Gernot;沙勒尔,罗伯特;霍切瑙尔,克里斯托夫;马可·格乌斯布鲁克;库伊珀斯,约翰;维莱拉,卡洛斯·莫朗;克拉亚、佐利安娜;帕诺普洛斯(Panopoulos),基里亚科斯(Kyriakos);芬西亚,伊拜;迪格斯-阿隆索,阿尔巴;阿尔穆伊纳-维拉德,埃尔南;蒂莫西·蒂奥西亚斯 (Timothy Tsiotsias) Kienzle,Norbert; Martini,Stefan 对流化床中生物质与蒸汽气化产生的生产者气体进行表征的测量方法评估 在:生物质和生物能源 - 阿姆斯特丹 [ua]:Elsevier Science,Bd。 163 (2022),附录。 13 S. [实际值:5,774]
安卡-库斯,安德烈斯;伯格,卢克;庞格拉茨,格诺特;沙勒,罗伯特;霍亨瑙尔,克里斯托夫;格泽布鲁克,马可;柯伊珀斯,约翰;维莱拉,卡洛斯·莫朗;克拉亚,佐利亚娜;帕诺普洛斯,基里亚科斯;丰西亚,伊拜;迪格斯-阿隆索,阿尔巴;阿尔穆伊纳-维拉德 (Almuina-Villard),埃尔南;蒂莫西·齐奥西亚斯;金茨勒,诺伯特; Martini, Stefan 对流化床中蒸汽生物质气化产生的煤气的测量方法进行评估,见:生物质和生物能源 - 阿姆斯特丹 [u.a.]:Elsevier Science,Bd。163 (2022)。13 S.[Imp.fact。:5,774]
安卡-库斯,安德烈斯;伯格,卢克;庞格拉茨,格诺特;沙勒,罗伯特;霍亨瑙尔,克里斯托夫;格泽布鲁克,马可;柯伊珀斯,约翰;维莱拉,卡洛斯·莫朗;克拉亚,佐利亚娜;帕诺普洛斯,基里亚科斯;丰西亚,伊拜;迪格斯-阿隆索,阿尔巴;阿尔穆伊纳-维拉德 (Almuina-Villard),埃尔南;蒂莫西·齐奥西亚斯;金茨勒,诺伯特; Martini, Stefan 对流化床中蒸汽生物质气化产生的煤气的测量方法进行评估,见:生物质和生物能源 - 阿姆斯特丹 [u.a.]:Elsevier Science,Bd。163 (2022)。13 S.[Imp.fact。:5,774]
摘要:本评论文章收集了最新的热塞和热塑性聚合物的回收技术。有关现有实验程序及其有效性的结果。对于热固性聚合物而言,综述主要集中于纤维增强的聚合物复合材料,重点是基于环氧树脂的系统和碳/玻璃纤维作为增强型,因为其寿命终止管理的环境关注。热过程(流化床,热解)和化学过程(不同类型的溶剂分解)。分析了最新的合并过程(微波炉,蒸汽和超声辅助技术)和非凡的回收尝试(电化学,生物学和带有离子液体)。导致材料降级的机械回收被排除在外。的见解也是针对迄今为止为纤维重复使用的升级方法提供的。至于热塑性聚合物,最常见的聚合物矩阵的最先进的回收方法以及适当的添加剂用于矩阵升级。机械,化学和酶促回收过程被描述了。使用纤维增强的热塑性复合材料是非常新的,因此,提出了最新成就。借助上述所有信息,这项广泛的审查可以作为教育目的的指南,针对聚合物回收的学生和技术人员。