摘要。那种型大细胞淋巴瘤(ALCL)是一种罕见且高度侵入性的非霍格金淋巴瘤。在过去的几十年中,建议对一线治疗进行传统的化学疗法方案,例如环磷酰胺,长春新碱,阿霉素和泼尼松方案。为了提高患者的存活,已经深入研究了剂量密集型化学疗法和造血干细胞移植,并取得了一些进展。最近,随着临床病例的积累和临床试验的发展,以及我们对ALCL生物学行为的深入不足的改善,信号通路和所涉及的免疫疗法的研究,对此主题的研究已如火如荼。出现了几种靶向药物和免疫疗法,包括变性淋巴瘤激酶抑制剂,brentuximab vedotin,mTOR抑制剂,编程的细胞死亡蛋白1/程序性死亡蛋白1抑制剂1抑制剂和芯片抗原受体受体治疗,似乎为某些Alcl提供了Alcl的患者。本评论的重点是当前使用传统疗法以及ALCL这些新药的治疗前景。
Jeremy Lavine 医学博士、哲学博士 | 西北大学范伯格医学院 导师:Harris R. Perlman 博士和 Amani Fawzi 医学博士 巨噬细胞是存在于不同亚型中的免疫细胞,经典衍生的巨噬细胞促进湿性老年性黄斑变性,而非经典巨噬细胞则阻止其发展。该小组已确定了一种巨噬细胞亚群,该亚群表达源自经典巨噬细胞的血管生长因子,并存在于患有湿性老年性黄斑变性的患者中。研究人员旨在确定非经典衍生的巨噬细胞亚群并确定它们对实验性湿性老年性黄斑变性的抑制作用。
1在美国德克萨斯州休斯敦休斯敦市卫理公会研究所神经外科中心神经病室中心内的DNA维修研究部; vprovasek@houstonmethodist.org(v.e.p。 ); mkodavati@houstonmethodist.org(M.K。 ); whb.bio@gmail.com(H.W.) 2,德克萨斯农工大学,德克萨斯州大学站,德克萨斯大学77843,美国3 INSERM,UMR-S1118,MéCanismesCentraux etpériquesde laneuroodégénénénénénénénénénénénénénénénénénénénénedede de strasbourg,crbs,crbs,crbs,crbs,67000 strasberg,frances,弗朗斯,弗朗斯,弗朗西斯; woting.guo@inserm.fr 4 VIB,大脑与疾病研究中心,比利时3000卢文5卢文5卢文脑研究所(LBI),比利时3000卢文6干细胞研究所,开发与再生部,Ku Leuven,3000 Leuven,Belgium,Belgium; ludo.vandenbosch@kuleuven.be Be 7微生物学和免疫学系,德克萨斯大学医学分公司,加尔维斯顿,德克萨斯州77555,美国; sboldogh@utmb.edu 8美国德克萨斯州休斯敦休斯顿卫理公会研究所神经外科部; gbritz@houstonmethodist.org 9美国纽约市威尔康奈尔医学院神经外科部,美国10065,美国 *通信:mlhegde@houstonmethodist.org1在美国德克萨斯州休斯敦休斯敦市卫理公会研究所神经外科中心神经病室中心内的DNA维修研究部; vprovasek@houstonmethodist.org(v.e.p。); mkodavati@houstonmethodist.org(M.K。); whb.bio@gmail.com(H.W.)2,德克萨斯农工大学,德克萨斯州大学站,德克萨斯大学77843,美国3 INSERM,UMR-S1118,MéCanismesCentraux etpériquesde laneuroodégénénénénénénénénénénénénénénénénénénénénedede de strasbourg,crbs,crbs,crbs,crbs,67000 strasberg,frances,弗朗斯,弗朗斯,弗朗西斯; woting.guo@inserm.fr 4 VIB,大脑与疾病研究中心,比利时3000卢文5卢文5卢文脑研究所(LBI),比利时3000卢文6干细胞研究所,开发与再生部,Ku Leuven,3000 Leuven,Belgium,Belgium; ludo.vandenbosch@kuleuven.be Be 7微生物学和免疫学系,德克萨斯大学医学分公司,加尔维斯顿,德克萨斯州77555,美国; sboldogh@utmb.edu 8美国德克萨斯州休斯敦休斯顿卫理公会研究所神经外科部; gbritz@houstonmethodist.org 9美国纽约市威尔康奈尔医学院神经外科部,美国10065,美国 *通信:mlhegde@houstonmethodist.org2,德克萨斯农工大学,德克萨斯州大学站,德克萨斯大学77843,美国3 INSERM,UMR-S1118,MéCanismesCentraux etpériquesde laneuroodégénénénénénénénénénénénénénénénénénénénénedede de strasbourg,crbs,crbs,crbs,crbs,67000 strasberg,frances,弗朗斯,弗朗斯,弗朗西斯; woting.guo@inserm.fr 4 VIB,大脑与疾病研究中心,比利时3000卢文5卢文5卢文脑研究所(LBI),比利时3000卢文6干细胞研究所,开发与再生部,Ku Leuven,3000 Leuven,Belgium,Belgium; ludo.vandenbosch@kuleuven.be Be 7微生物学和免疫学系,德克萨斯大学医学分公司,加尔维斯顿,德克萨斯州77555,美国; sboldogh@utmb.edu 8美国德克萨斯州休斯敦休斯顿卫理公会研究所神经外科部; gbritz@houstonmethodist.org 9美国纽约市威尔康奈尔医学院神经外科部,美国10065,美国 *通信:mlhegde@houstonmethodist.org
对年龄相关的黄斑变性(AMD)的诊断可能会对患者的生活产生重大影响。因此,考虑差异诊断是很重要的,因为这些诊断在预后,遗传,监测和治疗方面可能与AMD有很大差异。与drusen,类似drusen的变化,单基因视网膜营养不良以及许多其他罕见的黄斑疾病的AMD诊断有关其他黄斑疾病的差异诊断。在这篇综述中,提出了临床示例,以说明对AMD的替代诊断,以及何时应考虑这些诊断。These include, amongst others, patients with autosomal dominant drusen, Sorsby fundus dystrophy, pachydrusen, late-onset Stargardt disease, extensive macular atrophy with pseudodrusen (EMAP), pseudoxanthoma elasticum (PXE), North Carolina macular dystrophy, mitochondrial retinopathy, benign yellow dot黄斑病,圆顶或山脊形的斑块或黄斑telangiectasia类型2。
对随机和不规则抽样的时间序列进行建模是在广泛的应用中发现的一个具有挑战性的问题,尤其是在医学中。神经随机微分方程(神经SDE)是针对此问题的有吸引力的建模技术,它可以将SDE的漂移和扩散项与神经网络相关。但是,当前用于训练神经SDE的算法需要通过SDE动力学进行反向传播,从而极大地限制了它们的可扩展性和稳定性。为了解决这个问题,我们提出了轨迹流匹配(TFM),该轨迹以无模拟方式训练神经SDE,通过动力学绕过反向传播。TFM利用从生成建模到模型时间序列的流量匹配技术。在这项工作中,我们首先为TFM学习时间序列数据建立必要条件。接下来,我们提出了一个改善训练稳定性的重新聚集技巧。最后,我们将TFM适应了临床时间序列设置,从绝对性能和不确定性预测方面,在四个临床时间序列数据集上的性能提高了,这是在这种情况下的关键参数。
DR。黛安·博文坎普(Diane Bovenkamp):您好,欢迎。 我的名字叫Brightfocus Foundation科学事务副总裁Diane Bovenkamp博士。 我很高兴成为您今天的黄斑聊天聊天,“饮食和营养如何影响黄斑变性”。 Brightfocus Foundation今天将这种聊天带给您。 黄斑变性研究是我们在Brightfocus的计划之一。 我们为全世界的杰出科学研究提供了资金,以击败阿尔茨海默氏病,黄斑变性和青光眼,并提供有关这些令人心碎的疾病的专家信息。 您可以在我们的网站www上找到更多信息。 brightfocus.org。 我很高兴介绍今天的演讲嘉宾。 Sheldon Rowan博士是马萨诸塞州波士顿的Tufts大学医学院眼科助理教授,也是Jean Mayer USDA人类人类营养研究中心的营养和视觉研究团队的科学家,同时也位于塔夫特。 罗恩博士还是生物化学和分子营养部的主席,也是弗里德曼的营养助理教授DR。黛安·博文坎普(Diane Bovenkamp):您好,欢迎。我的名字叫Brightfocus Foundation科学事务副总裁Diane Bovenkamp博士。我很高兴成为您今天的黄斑聊天聊天,“饮食和营养如何影响黄斑变性”。 Brightfocus Foundation今天将这种聊天带给您。黄斑变性研究是我们在Brightfocus的计划之一。我们为全世界的杰出科学研究提供了资金,以击败阿尔茨海默氏病,黄斑变性和青光眼,并提供有关这些令人心碎的疾病的专家信息。您可以在我们的网站www上找到更多信息。brightfocus.org。我很高兴介绍今天的演讲嘉宾。Sheldon Rowan博士是马萨诸塞州波士顿的Tufts大学医学院眼科助理教授,也是Jean Mayer USDA人类人类营养研究中心的营养和视觉研究团队的科学家,同时也位于塔夫特。 罗恩博士还是生物化学和分子营养部的主席,也是弗里德曼的营养助理教授Sheldon Rowan博士是马萨诸塞州波士顿的Tufts大学医学院眼科助理教授,也是Jean Mayer USDA人类人类营养研究中心的营养和视觉研究团队的科学家,同时也位于塔夫特。罗恩博士还是生物化学和分子营养部的主席,也是弗里德曼的营养助理教授
与初级保健医生的咨询区分肝脏脂肪的渗透过程和伴有纤维化过程的杂种过程并不总是那么容易。 div>为此,我们稍后将看到一系列的非侵入性方法是设计了,在咨询中使用常规的分析和临床参数,他们会告诉我们患者发展肝肝硬化的可能性。 div>我们还可以依靠某些图像技术,例如超声波,可以帮助我们进行诊断。 div>最后,我们还必须阐明那些患有纤维化高风险的患者的某些推导标准,这些患者可能容易受到肝活检,并由医院水平的消化系统专家遵循。 div>
与年龄相关的黄斑变性(AMD)是一种多因素遗传疾病,在34个基因座处至少有52个可识别的相关基因变异,包括补体因子H(CFH)中的变体(CFH)和年龄相关的超级疾病易感性2/高磁体需求2/高敏感性丝氨酸肽肽-1(Arms2/herm2/Hrtra)。遗传因素最多占疾病变异性的70%。但是,基于人群的遗传风险评分通常对临床试验设计和风险组的分层比对个别患者咨询更有帮助。有一些证据表明对AMD患者使用的各种治疗方式的药物遗传学影响,包括与年龄相关的眼病研究(AREDS)补充剂,光动力疗法(PDT)和抗血管内皮生长因子(抗VEGF)。但是,目前尚无令人信服的证据表明遗传信息在常规临床护理中起作用。
对补体系统的仔细调节对于使补体蛋白质滴定免疫防御至关重要,同时还可以防止受控不良的炎症受到附带组织的损害。在眼睛中,补体活动和抑制之间的这种平衡至关重要,因为低水平的基础补体活动对于支持眼免疫特权是必要的,这是维持视觉的先决条件。不调节的补体激活有助于副炎症,这是由细胞损伤引起的低水平的炎症,其功能可重新建立稳态或彻底破坏视觉轴的炎症。补体失调与许多眼部疾病有关,包括青光眼,糖尿病性视网膜病和与年龄相关的黄斑变性(AMD)。在过去的二十年中,补体活性一直是AMD发病机理中强烈研究的重点,从而导致了新型治疗剂治疗萎缩AMD的发展。这篇综述概述了最近的进步和挑战,突出了已促进临床试验的治疗方法,并在眼后部分和选定的眼部疾病中提供了补体系统的一般概述。