Harshith Kumar R 1,Piyanshu Gupta 2,S Shreyas 3 1、2、3印度班加罗尔市总统大学CSE系CSE系摘要 - 本文引入了针对涉及城市通勤者面临的挑战的常规导航系统的开创性增强,并侧重于Bangalore。利用实时天气整合,该系统主动提醒用户在多雨天气中潜在的水口区域,从而实现了知情的路线计划和旅行时间和油耗的优化。道路状况数据(包括坑洼和速度破坏者)的结合增强了驾驶员无缝导航的能力。基于大雨的水槽区域的动态标记,提供有关容易洪水的地点的实时信息,使用户在不利天气条件下做出明智的决定。使用Python和Google合作实施该项目,利用Folium等开源库来创建用户友好的地图,从而为您的旅行体验提供了宝贵的见解。这种创新的方法有助于优化的路线规划,减少旅行时间以及提高城市流动性的总体效率。
我们制定了良好的连续时间生成流量,用于学习通过F-差异的近端正规化在低维歧管上支持的分布。wasserstein-1近端运算符调节f- ddiverences可以比较单数分布。同时,Wasserstein-2近端运算符通过添加最佳运输成本(即动能惩罚)来使生成流的路径正规化。通过均值野外游戏理论,我们表明这两个接近物的组合对于配制良好的生成流量至关重要。可以通过平均场游戏(MFG)的最佳条件,汉密尔顿 - 雅各布(HJ)的系统以及向前连续性偏微分方程(PDE)的最佳条件进行分析,其解决方案表征了最佳生成流。对于在低维流形的学习分布中,MFG理论表明,Wasserstein-1近端解决了HJ终端状况,而Wasserstein-2近端是针对HJ动力学的,这既是相应地向后的PDE系统,都可以很好地置于范围内,并且是一个独特的范围。这意味着相应的生成流也是唯一的,因此即使在学习在低维流形的高维分布方面,也可以以强大的方式学习。通过对持续时间流的对抗训练来学习生成流,这绕开了对反向模拟的需求。我们证明了我们的方法生成高维图像的功效,而无需诉诸自动编码器或专业体系结构。
W 窑 cm -2 曰 持续增加到 2.0 bar 袁 功率密度进一步提升 达到 0.94 W 窑 cm -2 ( 图 4E). Chen 等 [47] 报道 Co-N-C 催化剂在空气的燃料电池测试中压力从 0.5 bar 提 升至 2 bar 上 袁 最高功率密度从 0.221 W 窑 cm -2 提升 到 0.305 W 窑 cm -2 ( 图 4F). 文献中记录的非贵金属催 化剂燃料电池测试压力一般不大于 2 bar 袁 在此范 围内催化剂燃料电池的性能随着压力的增加而提 升 袁 压力过大会造成催化剂层结构的破坏并加速 膜电极的退化 . 目前 袁 鲜有对测试过程中气流量影 响的探究 . 从表 1 中发现 袁 大部分基于非贵金属催 化剂的 PEMFC 性能测试是采取固定气流量的方 式 袁 但气流量的选择并没有统一标准 袁 其中空气的 气流量一般等于或大于氧气的气流量 . 4 非贵金属催化剂耐久性分析
作为与监管机构和审计师打交道的CISO,必须能够证明安全控制的有效性;由于加密如此普遍,并且具有如此多的遗产解决方案,再加上加密协议可能会协商弱密码的事实,建立所需的高度保证是一个巨大的挑战。cisos必须基于被认为是这种情况而不是一定是现实的默认假设。因此,CISO可能会陷入na乱的疑问,并以残余风险为由。对于审计师来说也是如此。实际和现实之间的感知差距可能不会被忽略,直到审计师通过配置异常确定弱点为止。
© 2022 Qioptiq Photonics GmbH & Co. KG。保留所有权利。Qioptiq 保留随时更改本文档及其所含技术数据的权利,恕不另行通知,并且对编辑、图片和印刷错误不承担任何责任。