杂质(Cl-)ppm < 1.5 描述 陶氏有机硅微电子胶粘剂产品旨在满足微电子和光电子封装行业的关键标准,包括高纯度、防潮性以及热稳定性和电稳定性。陶氏有机硅微电子胶粘剂产品具有出色的应力消除和高温稳定性,可出色地无需底漆粘附于各种基材和部件。这些产品非常适合需要低模量材料的微电子设备、无铅焊料回流温度(260°C)或其他高可靠性应用。这些材料具有湿式分配和预固化薄膜产品形式,可满足设备封装应用的广泛需求。陶氏有机硅微电子胶粘剂产品以方便的单组分材料形式提供,具有针对导电性、电绝缘性或导热性开发的特定配方,所有这些都通过热固化而不会产生副产品。表面准备 所有表面都应使用 DOWSIL™ OS 液体、石脑油、矿物油或甲基乙基酮 (MEK) 等溶剂彻底清洁和/或除油。建议尽可能进行轻微表面打磨,因为这样可以促进良好的清洁并增加粘合表面积。最后用丙酮或 IPA 擦拭表面也有助于去除其他清洁方法可能留下的残留物。在某些表面上,不同的清洁技术会比其他技术产生更好的效果。用户应确定最适合其应用的技术。 基材测试 由于基材类型多样且基材表面条件不同,因此无法对粘合强度和粘合强度做出一般性陈述。为了确保在特定基材上的最大粘合强度,需要使粘合剂在搭接剪切中 100% 内聚破坏或具有类似的粘合强度。这可确保粘合剂与所考虑的基材兼容。此外,此测试可用于确定最短固化时间或检测表面污染物(如脱模剂、油、油脂和氧化膜)的存在。
阿尔茨海默病 (AD) 是一种渐进性脑部疾病,其特征是记忆力、思维和身体机能下降。据估计,AD 影响了 620 万 65 岁及以上的美国人,是美国第六大死亡原因。1 阿尔茨海默病的进展分为三个阶段:(1) 临床前 AD (2) AD 导致的轻度认知障碍 (MCI) 和 (3) 阿尔茨海默病痴呆,进一步分为轻度、中度和重度。随着疾病的进展,记忆力、思维和行为会出现明显的症状变化,影响患者进行日常生活活动的能力。晚发型 AD 的风险因素包括高龄、载脂蛋白 e4 基因 (APOE-e4) 突变和 AD 家族史。早发性 AD 与几种不太常见的基因突变有关。1 没有单一的测试可用于诊断阿尔茨海默氏痴呆症,而是需要各种评估、认知测试和生物标志物共同协助诊断。2 虽然该疾病的确切机制尚未完全了解,但存在几种假设,这些假设侧重于该疾病的不同特征,包括但不限于 β-淀粉样蛋白的积累、一种名为 tau 的蛋白质的异常形成、炎症和胆碱能异常。3 当前和未来的药物靶点旨在纠正这些不平衡,最近重点关注 β-淀粉样斑块的积累和磷酸化 tau 蛋白的神经原纤维缠结。人们认为,这些斑块和缠结的积累会导致大脑神经元的损伤和死亡。4,5 阿尔茨海默病痴呆的药物治疗包括胆碱酯酶抑制剂(即多奈哌齐、利凡斯的明和加兰他敏),主要用于早期和中期 AD,以及谷氨酸拮抗剂美金刚,用于中度至重度 AD。这些治疗方法并未显示出可以阻止或减缓疾病进展,但可用于治疗该疾病的认知和功能症状。1 FDA 于 2021 年 6 月 7 日宣布批准 Aduhelm (aducanumab-avwa),这是第一个针对淀粉样蛋白-β的单克隆抗体。2023 年 1 月 6 日,FDA 批准了第二种抗淀粉样蛋白β单克隆抗体 Leqembi (lecanemab-irmb)。2024年7月2日,FDA批准了Kisunla。
摘要 免疫疗法具有持久临床益处的潜力,但也对目前构成影像引导治疗基础的肿瘤大小与结果之间的关联提出了质疑。人工智能 (AI) 和放射组学允许在医学图像中发现新的模式,从而可以提高放射学在癌症患者管理中的作用,尽管文献中的方法问题限制了其临床应用。我们使用与免疫疗法和放射组学相关的关键词,对 MEDLINE、CENTRAL 和 Embase 从数据库建立到 2022 年 2 月的文献进行了综述。我们删除了所有重复、非英语报告、摘要、评论、社论、观点、病例报告、书籍章节和不相关的研究。从剩余的文章中提取了以下信息:出版信息、样本量、原发性肿瘤部位、成像方式、主要和次要研究目标、数据收集策略(回顾性与前瞻性、单中心与多中心)、放射组学签名验证策略、签名性能以及计算放射组学质量评分 (RQS) 的指标。我们确定了 351 项研究,其中 87 项是与我们的研究问题相关的独特报告。队列规模的中位数(IQR)为 101(57-180)。放射组学模型开发的主要目标是预测(n=29,33.3%)、治疗反应预测(n=24,27.6%)以及肿瘤表型(n=14,16.1%)或免疫环境(n=13,14.9%)的表征。大多数研究都是回顾性的(n=75,86.2%)并从单个中心招募患者(n=57,65.5%)。对于具有模型测试可用信息的研究,大多数(n=54,65.9%)使用了验证集或更好的验证集。与免疫环境和总体预后相比,预测治疗反应或肿瘤表型的放射组学特征的性能指标通常最高。在可能的最高分 36 分中,RQS 的中位数 (IQR) 为 12 (10–16)。虽然越来越多的有希望的结果证明了人工智能和放射组学可以推动针对广泛适应症的精准医疗方法,但在将这些结果转化为临床实践之前,必须标准化数据收集以及优化方法质量和严谨性。
_____________________________________________________________________ 遗传因素被认为在健康和疾病的几乎每个方面都发挥作用。我们对这些遗传影响的了解正在增加,我们检测它们的能力也在增加。许多人对使用基因测试感兴趣。基因测试可用于医疗和非医疗目的,以确定祖先、预测药物敏感性、预测患上特定疾病和将这种易感性遗传给孩子的可能性,以及在肿瘤学环境中检测获得性基因变化,这可能有助于确定预后或治疗。 用于医疗目的的基因检测 基因测试结果可能对健康产生重大影响,不仅对接受测试的个人,而且在检测可遗传基因变化时也可能对其亲属产生重大影响。 澳大利亚皇家病理学家学院 (RCPA) 强烈主张,复杂的医疗测试应始终由经验丰富的医生或其他具有适当资格的医疗从业人员提出,并与他们讨论。这种方法适用于所有医疗测试。它对于预测儿童医疗未来的复杂基因测试尤其重要。将与重大临床问题有关的基因检测直接推销给患者并不合适。(RCPA 关于 DTC 的媒体发布 - 2018 年 7 月)此外,一些基因检测可能会产生复杂的结果,对某些人产生深远的影响。NPAAC 提供了将基因检测分为两个级别的指导:1 级(“标准”)检测和 2 级(“可能导致复杂临床问题”)检测。2 级基因检测需要特定的书面同意,并且与咨询问题相关,需要有适当经验的医疗专家或接受过专门培训提供基因咨询的人员(例如基因咨询师)的参与......(NPAAC 对人类核酸医学检测的要求 2013)非医疗目的的基因检测一些基因检测也可用于非健康目的,例如远亲测试或生活方式或行为特征(见上文的分类表)。如果这些类别的测试不涉及医学,则无需医疗或保健从业人员参与,并且可以通过多种途径进行此类测试,其中一些可能是直接面向消费者 (DTC)。(NHMRC 医学基因检测指南 https://www.nhmrc.gov.au/about-us/publications/medical-genetic-testing-information-health- professionals
1。实验室费用时间表中的费用适用于医师当前程序术语(CPT),专业版,2016年或医疗保健通用程序编码系统(HCPCS),专业版,2016年。补偿仅限于指示的使用FDA批准用于体外诊断使用的程序,或者,纽约州卫生部普遍认为可以接受。可以在以下链接中访问最新覆盖策略的NYS Medicaid更新:http://www.health.ny.gov/health_care/medicaid/medicaid/program/update/main.htm 2。费用包括测试绩效中认证要求的所有许可专业人员的服务。3。费用还包括与标本测试有关的所有费用,包括标本的收集,存储和运输以及结果的性能和报告。未报告的仪器控件不能单独报销。“按报告”(BR)如费用时间表所示,需要报销,需要一份声明,表明需要服务,测试的类型,测试结果,标本的数量和来源以及实验室对服务的常规和习惯费用的文档。4。除非另有说明,否则费用是用于定量分析的。数学计算(例如,A/G比的计算,电离钙,游离甲状腺素指数(T 7)或渗透压)是不可偿还的。5a。治疗或毒性作用的强度和概率必须与血液浓度定量相关。可以报销治疗药物监测。此外,必须满足以下一个或多个标准:(1)这些给出所需反应的浓度与产生毒性的浓度之间存在狭窄的范围,(2)很容易评估的替代终点(例如,对口腔抗凝剂的原栓塞时间)缺乏或(3)具有很大的吸收性和(3)药物的互相可变性。治疗性监测仅在对血液标本进行时才有覆盖的服务。使用特定于药物的代码80150至80203。代码80299仅用于符合上面概述的治疗监测标准的药物,该药物不在单个代码中列出。代码80299是可“按报告”计费的,必须在索赔表上的程序说明字段中指定该药物。峰值和低谷(或predose and destose)分析(例如临床指示(例如氨基糖苷))作为两个程序可偿还。5b。nys医疗补助药物测试政策遵循两步测试过程/结构,该过程包括使用筛查(推定)测试,然后进行确认(定量)测试。使用通用程序术语(CPT)代码“ 80305”,“ 80306”或“ 80307”的推定药物类筛查测试是该过程的第一步。仅返回阳性结果或在筛查测试(假定)或筛选测试中尚无定论的物质,与临床表现不一致的筛查测试可用于使用CPT代码“ 80321”通过“ 80321”到
•桥梁妇女健康感染性疾病检测测试(桥梁诊断)CPT代码0330U注意:不允许实验室代表订购医师获得临床授权或参加授权过程。只有订购医师应参与与先前授权/医疗必要性有关的授权,上诉或其他行政程序。在任何情况下,实验室或医师/提供者均不得使用代表实验室的代表或与实验室和/或第三方有关系的任何人,以代表命令医师获得授权,以促进授权过程的任何部分或任何授权范围的授权元素,包括遵循和/或否定申请的任何元素,包括遵守和/或否定的任何元素,包括遵守和/或否定的任何元素,并允许任何拟议的授权,或者否定授权。适当性。如果发现实验室或第三方支持授权过程的任何部分,则BCBSRI将认为该行动违反了该政策,并将采取严格的行动,包括从BCBSRI提供商网络终止并终止。如果实验室提供尚未授权的实验室服务,则该服务将被拒绝作为参与实验室的财务责任,并且不得向成员账单。商业产品未涵盖一些基因测试服务,对于任何自资助的群体的合同排除在外,这些群体排除了与州授权有关的生物标志物测试的扩大覆盖范围,R.I.G.L。§27-19-81在生物标志物测试任务策略中描述。对于这些小组,在医学上不需要或不涵盖哪些基因测试服务涵盖的列表,因为它们是合同的排除,可以在基因测试服务或专有实验室分析政策的“编码”部分中找到。请参阅适当的福利手册,以确定成员计划是否已定制福利范围。请参阅相关策略列表以获取更多信息。覆盖范围的福利可能会有所不同。请参阅适当的福利手册,覆盖范围或订户协议的适用实验室福利/承保范围。背景细菌性阴道病(BV)BV是由正常细菌阴道菌群失衡引起的。这很常见,尤其是在生殖年龄的个体中。虽然没有单一的已知病因剂,但阴道菌群发生了变化,涉及耗尽过氧化氢的乳酸杆菌,其阴道pH值和其他细菌的过度生长升高,包括阴道,花生虫,植物菌,ttrepstopostreptepteptepteptepteptoccus,mobiluncty anna anaa,以及其他细菌。阴道培养不是鉴定BV的适当诊断方法,因为BV不是由特定细菌物种的存在引起的。各种商业测试提供了快速准确的pH评估和胺检测。例如,可以在商业上获得测量由阴道样品产生的挥发性气体和比色测试的自动设备。几项研究评估了DNA片段的核酸探针可检测和量化阴道流体样品中的特异性细菌。聚合酶链反应(PCR)方法提取并使用通用引物或特定引物扩增DNA片段。结果可能是定性的(评估是否存在特定的微生物)或定量(评估存在多少微生物)。该技术可用于测量多种生物(例如,已知与BV相关的生物)同时可作为Multitarget PCR测试可用。在接受多坐Multitarget PCR测试的BV症状或症状的个体中,证据包括一些有关技术性能和诊断准确性的前瞻性研究。相关结果是测试有效性,症状和疾病状况的变化。
仅在欧洲,每年就有超过 80,000 人死于创伤性脑损伤 (TBI),多达三分之一的 TBI 患者在受伤后六个月内无法完全康复,这种疾病仍然是发展中国家和发达国家面临的重大医疗和社会经济挑战[1-3]。尽管其对发病率和死亡率有显著影响,但治疗方法,特别是直接干扰 TBI 具体病理生理的治疗方法,仍然非常有限,并且仍然严格限于对症或实验性的[4,5]。为了克服这一困境,许多创新治疗方法已在多种不同的 TBI 临床前模型中进行了评估,并描述了有希望的结果;然而,到目前为止,这些治疗方法中均未在大型随机对照临床试验中显示出显著的益处[6-8]。导致有前景的临床前治疗方法无法应用到临床的主要问题之一是临床前结果评估不足,从而可能高估治疗效果:主要临床试验终点最近已从单纯评估放射学或监测参数转变为评估功能结果参数,如扩展格拉斯哥结果量表,因为这些参数被认为更能预测患者的生活质量。然而,临床前 TBI 研究主要关注组织病理学参数,如挫伤体积作为主要结果测量指标。结果测量不匹配的原因可能是客观和评估者独立评估啮齿动物临床前 TBI 模型中的步态和运动功能非常困难。受控皮质冲击模型是实验性 TBI 最常用的模型之一 [ 9 – 24 ]。尽管有大量的神经行为测试可用于评估 CCI 后的步态和运动功能,但关于此类神经行为测试与组织病理学损伤参数相关性的数据却很少。因此,尚不清楚神经行为测试是否会为通过组织病理学参数评估的结果提供重要的额外信息,以及是否对整体治疗效果的评估有显著贡献。鉴于运动功能受损可能仅仅是局部组织学损伤的直接结果,因此组织学结果评估可能就足够了,而广泛的神经行为测试则因此在时间和成本上效率低下。CatWalkXT 1 已被开发用于自动和独立于观察者地评估啮齿动物的步态和运动功能。它已用于各种创伤性和非创伤性神经系统疾病的临床前模型,如帕金森病、中风、周围神经损伤、脊髓损伤以及创伤性脑损伤 [25 – 31]。尽管 Cat-WalkXT 1 在脊髓损伤和周围神经损伤实验模型中的步态评估价值已得到充分证实,但其在啮齿动物临床前 TBI 步态评估中的价值仍不清楚。然而,在之前的研究中,我们最近验证了 CatWalkXT 1 是一种出色的独立于评估者的小鼠 CCI 后急性期步态和运动功能的自动化测试,并确定它是测试这些神经行为功能领域的出色工具,特别是在啮齿动物 CCI 模型中 [16]。然而,仍不清楚小鼠实验性 TBI 后结构损伤与步态和运动功能之间是否存在强有力的相关性,因此,是否可以根据组织学结果参数彻底评估治疗效果,或者是否应该更多地关注临床前 TBI 研究中的神经行为测试。
美国国家医学图书馆 (NLM) 提供科学文献的访问权限,但不认可或同意其内容。相反,交叉污染对食品安全构成重大风险,需要有效的清洁和消毒方案,这些方案需要通过表面采样协议进行验证、监控和验证。单独使用视觉评估是无效的,但可以作为监测表面残留污染的综合方法的一部分。微生物和非微生物检测方法在检测表面污染方面的有效性进行了比较。非微生物评估方法(例如 ATP 测试)可有效监测残留的表面污垢,而传统的微生物方法可以指示残留的微生物污染,但不能指示表面污垢。分子微生物方法和生物发光测试的最新进展提供了改进的检测能力。没有单一的理想表面测试方法;采样方法应考虑指导方针、综合策略和趋势分析。清洁对于去除表面的“污垢”和保持各种环境中的清洁至关重要。人类的接受度和消费者行为在确定清洁标准方面起着重要作用。清洁的环境对于预防疾病至关重要,肮脏的环境会促进病原体的传播。在食品行业,充分清洁对于防止交叉污染至关重要,尤其是对于即食食品。然而,人类食物过敏原或食物腐败生物的痕迹也可能带来健康风险并影响产品的保质期,这凸显了有效的清洁实践在保持清洁和安全标准方面的重要性。食品生产场所的清洁:法律和财务要求食品生产场所的环境监测是确保食品质量和安全的一个重要方面。虽然食品加工商可能会进行环境采样,但一些州和国家为执法人员提供了如何有效开展此项活动的指南。适当的清洁不仅对于保持食品卫生至关重要,而且出于财务原因也至关重要。清洁不充分会导致设备故障、效率降低和成本增加。清洁通常是一项立法要求,欧盟在其关于食品卫生的法规 (EC No. 852/2004) 中对此进行了规定。英国零售商协会的全球食品安全标准规定了食品安全的最低标准,包括清洁和清洁程序的要求。该标准强调了评估清洁效果、定义可接受和不可接受的清洁度水平以及记录结果的重要性。不符合这些标准可能会给食品制造商带来重大经济损失。除了财务影响外,清洁不当也会导致食品接触表面微生物的生长。这些微生物对环境压力表现出各种生理和遗传反应,使它们能够在非理想条件下生存。微生物滋生的因素包括它们能够产生应激反应并形成难以去除的生物膜。总体而言,保持食品生产场所清洁是确保食品安全和质量的关键方面。这对于遵守监管要求至关重要,并且可能对食品制造商产生重大的财务影响。监测清洁计划的重要性在于检测微生物、有机残留物或两者,这些物质可能存在于受污染的设备和环境表面上。与细菌、酵母和霉菌不同,病毒是专性细胞内寄生虫,只能在活细胞内生长,但可以在宿主外存活数天或数月,形成潜在的感染源。交叉污染是一个重要的风险因素,与高达 38% 的疫情有关,但其实际影响可能被低估。为了防止交叉污染,必须整合食品安全管理实践,包括场所设计、个人卫生和清洁。研究通过对食品处理活动和疫情病例的观察性研究,表明了预防交叉污染的重要性。案例研究 1 来自一家瑞士三明治工厂,在环境拭子和产品中发现了单核细胞增生李斯特菌,这凸显了需要进行环境监测以识别潜在的污染问题。清洁计划的修订解决了这个问题,强调了此类措施的重要性。案例研究 2 来自一家美国乳制品厂,在产品样本和环境拭子中发现了单核细胞增生李斯特菌,表明受污染的设备如何导致交叉污染。交叉污染是导致新兴病原体患病的关键因素,其中许多病原体的感染剂量较低。交叉污染的严重程度因病原体而异,一些病原体如 STEC 和弯曲杆菌的影响为中度至重度。间接交叉污染涉及一系列复杂的步骤,包括手、设备和表面,这说明需要全面的食品安全管理实践。必须认识到,表面采样和交叉污染不仅限于较潮湿的食品加工环境,而是广泛适用于不同的环境。巧克力、花生酱或干面条等低风险食品与食源性疾病爆发有关(Kornacki,2006 年)。在干燥的食品加工环境中,检测环境表面是否存在沙门氏菌或阪崎克罗诺杆菌以及酵母和霉菌等病原体至关重要(Kornacki,2006 年)。在屠宰场,手部接触表面通常受到严重污染,除非将高风险区域和低风险区域分开,否则将存在交叉污染的风险。这可能导致即食食品受到污染。企业被鼓励采用基于风险的方法来评估交叉污染,但这仍然是风险评估中的致命弱点(Griffith 和 Redmond,2005 年)。有效的清洁管理对于减少交叉污染的机会至关重要,但清洁计划中经常忽略手部接触表面(Griffith 和 Redmond,2005 年)。环境病原体污染食物的可能性约为 70%,其中单核细胞增生李斯特菌尤其令人担忧。楼层图/地图可以帮助评估潜在的交叉污染风险,并且是 BRC(2015 年)等标准所要求的。清洁管理的战略方法包括设计、建造和维护设备和场所,以消除难以清洁的区域,最大限度地减少交叉污染的机会,并确保有效的清洁规程。然而,如果没有合规文化和高级管理层的承诺,单靠规程是不会成功的(Griffith,2014 年)。清洁方法的实施是 BRC 等认证标准的一项关键要求,通常基于标准操作程序 (SOP)。清洁文件通常包括政策声明、时间表、程序、详细说明和记录表。越来越多的软件工具被用于支持该过程。审计员经常要求访问清洁计划、结果和从监控中获得的趋势。清洁方案必须是最新的,并且是记录控制系统的一部分,全面涵盖清洁设备和材料。必须认识到,清洁不能消除所有污垢,这对设备、水等材料有影响。未能正确维护清洁设备会导致交叉污染。一项研究发现,附着在清洁工具上的杆状菌和球菌在基因上与从相关食品中分离出来的杆状菌和球菌相同。清洁程序中的典型阶段包括:1. 预清洁 - 去除松散的食物或污垢、刮擦、吸尘等。2. 主清洁 - 去除更牢固地粘附的食物残渣、油脂或污垢3. 冲洗 - 去除清洁剂和乳化/溶解的污垢和油脂其他阶段可能包括消毒选项,以将残留的表面微生物数量降低到较低或可接受的水平。但是,消毒后是否需要冲洗尚有争议,有些指令允许在不存在可能对食品、人员或设备产生不利影响的残留化学物质的情况下将其作为一种选择。杀菌剂的耐药性是一个问题,但必须与可用水的质量、再污染的风险以及保持干燥加工环境的需要相平衡。在美国,消毒剂已为非冲洗应用设定了限制,并在较高水平使用它们,然后冲洗,可以帮助确保表面计数在可接受的范围内。一些处理器还使用额外的“终端消毒”阶段,例如臭氧或过氧化氢蒸汽,这可以在分解前提供额外的杀灭作用。然而,使用这些方法的决定取决于清洁化学品、水质、产品类型和风险水平等因素。全面的清洁实施方法至关重要,包括结合清洁和消毒方案,这些方案通过功效测试或表面采样进行验证和验证。例行审计也可以提供关于清洁效果的宝贵见解。没有单一的“理想”方法来评估清洁和消毒效果,因为所选方法必须考虑潜在表面污染、要控制的危害和所需的清洁度水平等因素。清洁表面的理想方法应该足够灵敏,能够在湿润和干燥的表面上有效工作,具有良好的可重复性和易用性。它还应该快速、便宜、万无一失,以便进行准确的趋势分析。该过程涉及去除有机残留物,例如食物残渣和过敏原,这有助于减少微生物生长并为消毒表面做好准备。低残留微生物数量对于防止食品污染和变质至关重要。清洁表面上是否存在水分会显著影响交叉污染的预防。表面之间的转移率可能有很大差异,并且会因水分而增加,但必须小心干燥以避免再次污染。存在各种方法来评估清洁和消毒的效果,包括目测评估、微生物拭子和快速非微生物化学检测方法,如 ATP 测试。这些较新的测试通过检测污垢而不是微生物来提供更真实的清洁度评估,提供主动的清洁度管理,并及时提供结果以采取纠正措施。在评估表面清洁度方面,微生物和非微生物方法各有优缺点。非微生物方法主要关注残留的有机表面碎片,但也可以通过 ATP 测试检测微生物污染,ATP 测试可以识别低至 104 CFU/mL 的细菌。然而,这些测试不考虑病毒或细菌孢子。微生物学方法仅提供残留表面生物数量的快照,而不表明表面有机污染的程度。食品环境中的表面微生物计数和 ATP 读数之间不太可能存在直接相关性,可能被认为是巧合,因此不可靠。清洁的有效性不能仅由这些方法确定,因为它们没有考虑产品残留物或不同类型的食品污染等各种因素。例如,ATP 含量高的食物可能微生物数量低,而生食可能 ATP 增加相对较低,但微生物数量增加较多。最近,ATP 技术已与评估酸性磷酸酶(一种在生肉和家禽中发现的酶)联系起来。这种方法涉及使表面拭子反应 2 或 5 分钟,光发射越多表示表面越不干净。本章旨在进一步回顾这些方法,以确保通过综合的表面采样计划保持适当且具有成本效益的清洁实践。人们已经探索在清洁前将染料应用于表面作为检测安全或感官问题的一种手段,尽管其在非食品接触区域的有效性尚不确定。一种简单的方法是将透明胶带贴在表面上,然后可以在移除后在光学显微镜下检查。已经开发了更先进的技术,例如荧光和共聚焦扫描激光显微镜,但对于食品企业的日常使用来说并不实用。另一种方法利用 ATP 生物发光测定来评估表面清洁度。酶-底物复合物荧光素-荧光素酶将与 ATP 相关的化学能转化为光,发射的光量与表面上的 ATP 量成正比,因此与表面的清洁度成正比。该方法以相对光单位 (RLU) 测量光,并需要代表可接受清洁值的基线数据。光度计的功能各不相同,有些型号除了标准检测外还提供一系列其他测试。一些光度计使用光电倍增管,而另一些则使用基于光电二极管的系统。每种方法都有其优点和缺点。光电二极管仪器通常更实惠且更坚固,但可能会影响测试灵敏度。为了缓解这种情况,制造商可以调整其试剂、配置或包装中使用的化学成分。选择光度计时,必须同时考虑仪器性能和测试化学成分(线性、灵敏度、重复性和准确性)。有各种报告和建议可帮助您做出明智的决定。许多较新的型号都配备了趋势分析软件,可以帮助跟踪不同地点和工厂随时间变化的数据。一些制造商通过将测试探针和设施集成到光度计中来提供 pH 和温度测量等附加功能。但是,如果设备出现故障,这些增强功能可能会带来复杂性和潜在问题。最终,仪器与其设计的测试相结合的性能对于确定适用性至关重要。大多数制造商提供校准和正/负控制以确保准确性。分析测试的简化使非技术人员能够使用简单的一体化分析进行测试。然而,这些检测中使用的化学配方在不同供应商之间可能存在很大差异,从而影响保质期和储存要求。ATP 水平会因食品类型和加工方式而有很大波动。高度加工的食品通常含有少量 ATP,而西红柿等新鲜食品的 ATP 浓度可能较高。在消毒过程中使用的清洁剂会影响测试结果,因此在测试前冲洗设备至关重要。不同制造商的仪器灵敏度各不相同,有些制造商的灵敏度高于其他制造商。ATP 测试的理想灵敏度水平仍是一个争论话题,讨论的重点是寻找检测低水平和避免过度灵敏度之间的平衡。清洁度标准因企业内的特定表面和区域而异,例如无菌灌装产品与排水管中的表面和区域。制造商提供了清洁度指南,但通常最好由食品企业自己决定,以指导持续改进工作。一种称为 ATP 生物发光的技术已被开发出来用于测量清洁度,一些制造商已采用这种方法来检测低至 0.1-5 ppm 的过敏原残留物。随着 ATP 生物发光的发展,其他针对各种成分(如蛋白质、糖和 NAD)的化学检测方法已被研究作为快速清洁测试。这些测试通常在几分钟内产生单色最终产品,可以用廉价的样品仪器进行目视评估或记录。这些测试的灵敏度各不相同,因此有些测试比其他测试更适合食品企业。使用快速化学测试时要考虑的因素包括测试的普遍性、灵敏度、成本、结果所需时间、简单性和记录能力。每个食品企业必须根据其具体情况和生产的食品类型选择最合适的测试。蛋白质检测方法在检测高蛋白食品(如家禽或乳制品)方面具有潜力,并且在检测过敏原方面也具有特殊用途,因为许多重要的食品过敏原本质上都是蛋白质。给出文章文本这里使用拭子测试检测食品表面的微生物可以提供有关污染程度和病原体存在的宝贵见解。这些测试可以检测蛋白质残留物,这表明有机污染,灵敏度水平从 1 到 10 µg 不等。产生的颜色强度与污染程度直接相关,尽管结果通常以通过/未通过的形式呈现。另一种广泛使用的测试检测 NAD,这是一种化学残留物,可以衡量有机污染。其他基于拭子的测试可以检测低至 2.5 µmol 的葡萄糖或葡萄糖和乳糖。葡萄糖通常存在于食物残渣中,而乳糖测定对乳制品行业特别有用。然而,这些快速化学检测有局限性,包括灵敏度低于同等的 ATP 检测。阴性结果不能用来排除微生物的存在。微生物表面采样的历史悠久,可以追溯到 20 世纪二三十年代。早期的方法基于擦拭,后来开发了直接琼脂接触法。然而,分子方法在未来可能会变得更加普遍。食品工业中使用的主要微生物学方法包括使用拭子、海绵或抹布从表面回收生物,然后在营养培养基上培养。这些测试可用于估计存在的一般或指示生物的残留数量,从而提供清洁效果的证据。指示生物可以反映表面微生物的质量并指示潜在的风险。病原体检测是一种独特的方法,涉及检测可能对公共健康构成风险的特定病原体,例如单核细胞增生李斯特菌。这种类型的测试需要不同的理念方法,并且通常与其他方法结合使用。在检测病原体时,通常需要检查更大的表面面积,而不仅仅是一小部分。所用的介质可以是固体、液体或半固体,通常用拭子接种。要确定病原体是否存在,必须测试足够大的表面面积。如果要寻找清洁度,则应擦拭特定区域,而如果要寻找病原体,则应测试更大的区域。在微生物检测中,回收效率 (RE) 起着至关重要的作用,并且可能因所用方法、微生物类型和测试表面而异。接触板和浸片等接触方法更易于使用,并且可以提供更好的结果,如两次大规模比较所示,尽管差异并不总是很大。然而,所有培养方法都有其挑战,特别是从培养表面去除生物。为了克服这个问题,人们使用了“冲洗”表面,其中冲洗液被用作微生物的来源。最近,人们尝试使用超声波去除表面微生物,尤其是生物膜中的微生物,这引发了人们对回收数量与产品污染的有效性和重要性的质疑。微生物方法的选择取决于所需的具体信息和当前的情况,拭子法被广泛使用,但也有其局限性和缺点。接触板和浸片比拭子法具有更好的可重复性,但也有其自身的挑战和要求。所需的最低限度的培养设施便携式装置可以测试用螺帽密封的冲洗水,保质期长 桨叶带铰链,更易于在平面上使用 只有运动生物才能覆盖琼脂表面 需要培养和灭菌处理设施 表面可能有琼脂残留 无法估计产生可数菌落的表面种群 存在可存活但不可培养 (VBNC) 细菌的风险 擦拭方法仍然是最古老且广泛用于表面监测 擦拭技术的变化会影响结果 回收率低,特别是在低表面种群密度下 缺乏可靠性、可重复性和再现性 有各种标准方法可用,包括 ISO 18593:2004 关于最佳擦拭方案及其对回收率的影响的基本信息仍然缺乏。回收率可看作是从表面去除微生物、在样品采集过程中释放微生物以及随后生长潜力的函数。实际回收率差异很大,从 0.1% 到 25% 不等,具体取决于所采用的技术。拭子类型、表面类型和微生物类型等因素会极大地影响回收率。微生物一旦附着在表面,尤其是生物膜上,就会变得越来越难以去除。此外,由于微生物滞留在芽纤维内,可重复性和灵敏度较差。改进流程一个方面的技术可能会对另一个方面产生负面影响,需要在不同组件之间进行权衡或妥协。缺乏标准化可能使解释单个环境拭子的结果变得困难,可能会导致对清洁效果产生错误的印象。拭子最适合使用多个测试结果来确定随时间推移的性能趋势。了解回收率的问题有助于改进和控制流程。用于保持等渗条件和减少生理压力的采样溶液可用于在运输过程中保持微生物的活力。选择这些溶液时需要小心,通过提供生长培养基来防止人为夸大计数。一些表面可能仍有残留消毒剂,需要中和剂。理想情况下,拭子应及时处理;然而,这通常是不切实际的。与实时分析相比,低温非冷冻运输可以最大限度地减少差异。在解释结果时,可以识别和考虑与常态有显著偏差的结果。需要考虑时间和润湿剂等因素,并针对特定病原体进行优化。应适当选择预富集培养基,但需要考虑非病原体的过度生长。一些制造商在其润湿溶液中添加表面活性剂,以提高从测试表面的“拾取”,这可以人为地增加菌落计数。由于担心拭子芽无法释放回收的微生物,一家制造商开发了一种新型拭子,这种拭子可以释放更多的微生物,从而实现更好的整体回收。另一种方法是使用真空细菌收集系统,这样无需拭子即可进行更大的表面评估。另一种方法是将独立的“一体化培养基和卫生拭子”放入试管中,以更快的速度获得结果。拭子在测试表面后返回到含有琼脂和指示剂系统的培养管中,使微生物生长并通过颜色变化检测其存在。不干净的表面可以在 12 小时内检测出阳性,具体取决于微生物污染水平。使用非特异性培养基可获得一般需氧菌落计数,而选择性或富集培养基则用于特定病原体或指示剂。指示剂系统基于显色、荧光或生物发光检测原理,可在 18 小时内检测出相关微生物。最近,将培养与生物发光测试相结合,可将严重污染表面的检测时间缩短至 1 小时,轻度污染表面的检测时间缩短至 8 小时。生物发光测试可用于大肠菌群、肠杆菌科、大肠杆菌和李斯特菌,从而可以在进一步生产食品之前迅速采取纠正措施。在 ATP 测定中使用光度计将其功能扩展到了传统的估计表面残留物中 ATP 的方法之外。海绵的工作原理与擦拭类似,即从表面去除微生物,释放它们,然后培养它们进行分析。恢复过程包括用压缩的无菌海绵擦拭测试表面,测试表面可能已预先润湿或需要润湿剂。为了避免污染,通常使用无菌手套握住海绵。接种后,将海绵密封在无菌信封中并运送到实验室,在那里搅拌并计数释放的生物。海绵在放回富集培养基中时,对病原体检测具有更高的灵敏度,并且不受附着在其基质上的微生物的影响。一些海绵的表面积比传统拭子大,因此可以测试更大的表面并施加更大的压力。变化包括法国用于擦拭表面的棍棒海绵和纱布。研究还表明,静电擦拭布的性能优于传统拭子(Lutz 等人,2013 年)。其他直接琼脂接触方法,称为“印刷方法”,涉及将无菌琼脂压在要采样的表面上。琼脂吸收微生物,然后繁殖并形成孵育后可见的菌落。这种方法最适合光滑、平坦的表面,并且琼脂的分散方式有所不同。可以使用各种方法计数微生物,包括接触板和浸片。这些工具还可用于计数食物、水或冲洗水中的液体样本中的生物。最近,已经开发出一种混合平板/浸片,用于测试不规则形状的表面。其他变化包括使用 Petrifilm 代替传统的琼脂平板进行培养。Petrifilm 是涂有营养物质和胶凝剂的薄膜,可以用 1 毫升去离子水重新水化以提供表面计数。还发现一种新型滚筒采样器比传统接触平板的产量更高。直接琼脂接触法有几个优点,包括易于使用、成本更低、回收率和可重复性更好。然而,它们更适合平坦表面,在可能出现过度生长的非常污染的表面上可能会出现问题。这会使统计分析变得具有挑战性。尽管如此,这种方法适用于指示清洁充分性,而不是提供精确的计数。与直接琼脂接触法相比,分子方法速度更快、灵敏度更高、特异性更强。这些技术使用基于 DNA 或 RNA 的扩增方法(如 PCR、RT-PCR 和 NASBA)来针对微生物核酸的特定部分。实时 PCR 可以同时进行扩增和检测。虽然分子方法可用于检测微生物,但它们无法区分活体生物和非感染性核酸,仅表明生物在某个阶段存在。分子方法需要技术专长和高成本设备,使其更适合于爆发调查或追踪工厂内的微生物。然而,协议的进步可能会导致它们在未来更多地用于评估消毒效果或估计微生物种群。清洁度风险评估需要了解生物数量和定量实时 PCR (qPCR) 等分子技术。一项研究比较了表面培养和 qPCR,但只测试了一个生物。培养产生的活细胞很少,而 qPCR 显示出更高的结果,包括非活细胞。可能需要对样品进行预处理,这会增加成本和时间。起诉通常依赖于视觉评估,除此之外没有清洁度的法律标准。然而,已经提出了一些指导方针,这些指导方针的推导方式各不相同,并且基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些建议的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或Petrifilm 是涂有营养物质和胶凝剂的薄膜,可用 1 mL 去离子水重新水化以提供表面计数。还发现一种新型滚轮采样器比传统接触板的产量更高。直接琼脂接触法有几个优点,包括易于使用、成本更低、回收率和可重复性更好。然而,它们更适合平坦表面,在可能过度生长的污染严重的表面上可能会出现问题。这会使统计分析变得具有挑战性。尽管如此,这种方法适用于指示清洁充分性,而不是提供精确计数。与直接琼脂接触法相比,分子方法速度更快、灵敏度更高、特异性更强。这些技术使用基于 DNA 或 RNA 的扩增方法(如 PCR、RT-PCR 和 NASBA)来靶向微生物核酸的特定部分。实时 PCR 可以同时进行扩增和检测。虽然分子方法可用于检测微生物,但它们不能区分活体生物和非感染性核酸,只能表明该生物在某个阶段存在。分子方法需要技术专长和高成本设备,因此更适合用于调查疫情或追踪工厂内的微生物。然而,协议的进步可能会导致它们在未来更多地用于评估消毒效果或估计微生物种群。清洁度风险评估需要了解生物数量和定量实时 PCR (qPCR) 等分子技术。一项研究比较了表面培养和 qPCR,但只测试了一种生物。培养产生的活细胞很少,而 qPCR 显示的结果更高,包括非活细胞。可能需要对样品进行预处理,这会增加成本和时间。起诉通常依赖于视觉评估,除此之外没有其他清洁度的法律标准。然而,已经提出了一些指导方针,其推导方式各不相同,基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些推荐的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或Petrifilm 是涂有营养物质和胶凝剂的薄膜,可用 1 mL 去离子水重新水化以提供表面计数。还发现一种新型滚轮采样器比传统接触板的产量更高。直接琼脂接触法有几个优点,包括易于使用、成本更低、回收率和可重复性更好。然而,它们更适合平坦表面,在可能过度生长的污染严重的表面上可能会出现问题。这会使统计分析变得具有挑战性。尽管如此,这种方法适用于指示清洁充分性,而不是提供精确计数。与直接琼脂接触法相比,分子方法速度更快、灵敏度更高、特异性更强。这些技术使用基于 DNA 或 RNA 的扩增方法(如 PCR、RT-PCR 和 NASBA)来靶向微生物核酸的特定部分。实时 PCR 可以同时进行扩增和检测。虽然分子方法可用于检测微生物,但它们不能区分活体生物和非感染性核酸,只能表明该生物在某个阶段存在。分子方法需要技术专长和高成本设备,因此更适合用于调查疫情或追踪工厂内的微生物。然而,协议的进步可能会导致它们在未来更多地用于评估消毒效果或估计微生物种群。清洁度风险评估需要了解生物数量和定量实时 PCR (qPCR) 等分子技术。一项研究比较了表面培养和 qPCR,但只测试了一种生物。培养产生的活细胞很少,而 qPCR 显示的结果更高,包括非活细胞。可能需要对样品进行预处理,这会增加成本和时间。起诉通常依赖于视觉评估,除此之外没有其他清洁度的法律标准。然而,已经提出了一些指导方针,其推导方式各不相同,基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些推荐的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或与直接琼脂接触法相比,分子方法速度更快、灵敏度更高、特异性更强。这些技术使用基于 DNA 或 RNA 的扩增方法(如 PCR、RT-PCR 和 NASBA)来靶向微生物核酸的特定部分。实时 PCR 可同时进行扩增和检测。虽然分子方法可用于检测微生物,但它们无法区分活体生物和非感染性核酸,仅表明生物在某个阶段存在。分子方法需要技术专业知识和高成本设备,因此更适合用于调查疫情或追踪工厂内的微生物。然而,协议的进步可能会导致它们在未来更多地用于评估消毒效果或估计微生物种群。清洁度风险评估需要了解生物数量和定量实时 PCR (qPCR) 等分子技术。一项研究比较了表面培养和 qPCR,但只测试了一种生物。培养产生的活细胞很少,而 qPCR 显示的结果更高,包括非活细胞。可能需要对样品进行预处理,这会增加成本和时间。起诉通常依赖于视觉评估,除此之外没有其他清洁度的法律标准。然而,已经提出了一些指导方针,这些指导方针的推导各不相同,并且基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些建议的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或与直接琼脂接触法相比,分子方法速度更快、灵敏度更高、特异性更强。这些技术使用基于 DNA 或 RNA 的扩增方法(如 PCR、RT-PCR 和 NASBA)来靶向微生物核酸的特定部分。实时 PCR 可同时进行扩增和检测。虽然分子方法可用于检测微生物,但它们无法区分活体生物和非感染性核酸,仅表明生物在某个阶段存在。分子方法需要技术专业知识和高成本设备,因此更适合用于调查疫情或追踪工厂内的微生物。然而,协议的进步可能会导致它们在未来更多地用于评估消毒效果或估计微生物种群。清洁度风险评估需要了解生物数量和定量实时 PCR (qPCR) 等分子技术。一项研究比较了表面培养和 qPCR,但只测试了一种生物。培养产生的活细胞很少,而 qPCR 显示的结果更高,包括非活细胞。可能需要对样品进行预处理,这会增加成本和时间。起诉通常依赖于视觉评估,除此之外没有其他清洁度的法律标准。然而,已经提出了一些指导方针,这些指导方针的推导各不相同,并且基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些建议的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或除了这个标准之外,没有其他清洁度的法律标准。但是,已经提出了一些指导方针,这些指导方针的推导方式各不相同,并且基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些建议的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或除了这个标准之外,没有其他清洁度的法律标准。但是,已经提出了一些指导方针,这些指导方针的推导方式各不相同,并且基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些建议的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或