先进疗法的安全性和质量,包括细胞,基因和组织工程的医疗产品,对于这些产品的成功至关重要。不育保证测试以确认在晚期治疗产品中没有微生物污染对于在患者给药之前确定安全至关重要。迄今为止,基于培养的汇编方法被用作药物无菌测试的黄金标准。然而,对于高级治疗产品,所需的培养期(例如14天或更长时间)与短(例如,2天)产品保质期不相容,并危害了重症患者的医疗保健结果。越来越多地评估替代性快速微生物测试方法,以减少晚期疗法的测试结果周转时间,但尚未广泛采用。在2020年9月,NIST建立了快速微生物测试方法(RMTM)联盟,以满足测量和标准标准(包括参考材料)的需求,以增加对再生医学和先进治疗产品中微生物污染物快速测试的信心。
许多过程参数可能会影响聚合物基质复合结构中粘合键关节的性能。除了与表面制备相关的参数列表外,这些参数还可以包括(但不限于):粘合剂年龄,粘附年龄(可以直接与贴材中的固定水分直接相关),粘合剂的粘合时间和固化特性(包括坡度,包括坡道,气候速率和持有持续时间)。在评估这些潜在关键过程参数的效果方面,就测试方法而言存在几种选项。lap剪切可能是最被考虑的测试方法,这主要是由于其易用性。母体面板的制造很简单,尽管已知粘合区边缘的粘合剂在关节的自由边缘处的应力浓度至关重要[1,2]。此外,测试是具有成本效益的,由于不需要专门的固定,测试持续时间很短,并且数据收集需求最少(通常仅记录故障负载)。然而,膝盖剪切测试仅验证短期键强度,并且是长期耐用性的差[3-6]。
1 简介 眼动追踪方法是研究人员的标准工具。眼动追踪设备有多种类型:集成到显示器的眼动追踪器、便携式眼动追踪器或移动眼动追踪眼镜。不同的眼动追踪器可用于不同的科学领域。最常见的领域之一是人机交互 (HCI)。在此领域,眼动追踪可用于软件开发或 Web 应用程序测试(Kim 等人,2018 年)。在后处理眼动追踪数据期间,可以使用许多不同的可视化技术,例如热图(Tula 等人,2016 年)或凝视图(Räihä 等人,2005 年)。但是,对于聚合可视化,参与者的屏幕必须看起来相同。在网站或传统软件应用程序的可用性测试中,分离的任务允许研究人员选择每个参与者时间线的特定部分,
1 简介 眼动追踪方法是研究人员的标准工具。眼动追踪设备有多种类型:集成在显示器中的眼动追踪器、便携式眼动追踪器或移动眼动追踪眼镜。不同的眼动追踪器可用于不同的科学领域。最常见的领域之一是人机交互 (HCI)。在此领域,眼动追踪可用于软件开发或 Web 应用程序测试(Kim et al., 2018)。在后处理眼动追踪数据时,可以使用许多不同的可视化技术,例如热图(Tula et al., 2016)或凝视图(Räihä et al., 2005)。但是,对于聚合可视化,参与者的屏幕必须看起来相同。在网站或传统软件应用程序的可用性测试中,分离的任务允许研究人员选择每个参与者时间线的特定部分,
本手册是学生在 40 小时的 SUPERPAVE 沥青粘合剂技术培训中将用作参考的教科书。教育计划的主要目标是培训学生正确使用新的 SUPERP A VE 粘合剂测试方法和设备。另一个主要目标是教会学生如何解释和应用新的 SUPERP A VE 粘合剂规范。培训计划包括 40 小时的教学。在这 40 小时中,学生将接受 8 小时的课堂教学、28 小时的实验室教学和 4 小时的实际测试结果课堂讨论。到课程结束时,学生将熟悉粘合剂测试程序和设备,并将知道如何使用粘合剂测试结果根据 SUPERPAVE 粘合剂规范对粘合剂进行分类。
由于环境干燥,聚合物钽电容器 (PTC) 中的异常充电电流 (ACC) 可能导致太空系统发生故障或失效。目前,没有标准指标来评估这种影响,影响 ACC 的因素也不太清楚。本文讨论了用于揭示 ACC 的不同方法的优缺点,包括恒定电压斜坡和恒定电流应力,并建议将功率浪涌测试 (PST) 作为筛选和鉴定太空应用 PTC 的程序。建议的测试类似于目前用于 MnO2 钽电容器的浪涌电流测试,但可确保在整个测试过程中零件中的高功率耗散。使用各种类型的电容器,估计了不同制造批次的 PTC 以及批次内样品之间的测试结果的可重复性。评估了水分含量、测试温度、应力电压和预处理的影响。使用红外摄像机通过实验研究了与 ACC 相关的热效应和灾难性故障的可能性,并在绝热加热条件下进行了计算。讨论了该现象的可能机制,并提出了避免与 ACC 相关的故障的测试建议。
1. 本标准已获准供国防部 (DoD) 的所有部门和机构使用。尽管本标准专为国防部应用而制定,但也可针对商业应用进行调整。本 G 版变更通知包含对早期版本的更新和说明。主要重点仍然相同 -(方法 528 除外)根据特定物资在其整个使用寿命期间将经历的条件调整物资的环境设计和测试限值,并建立实验室测试方法来复制环境对物资的影响,而不是试图重现环境本身。目标是提供关于如何在整个物资采购周期内实施环境调整过程的预先说明。
• GCS 监控器中的工程学科可确保安全性和数据质量 • 定性地观察与飞行前模拟预测之间的差异 • 对闭环稳定性和振动阻尼进行实时评估 • 观察执行器速率限制和饱和度,这些因素会有效打开环路并导致失控 • 监控由执行器死区引起的极限环振荡 (LCO),将其作为不稳定性的指标 • 飞行后数据分析
摘要 机电一体化系统的元件包括机械、电气和电子,它们相互连接,不同部件之间的连接必须作为一个单元。如果在公共参数上进行通信,则系统的两个组件之间可以交换信息。接口是指处理系统中过程的所有方式。架构和系统边界内的接口数量和设计会显著影响系统的简单性、适应性和可测试性。接口包括硬件和软件,它们通过将功能从一个组件插入另一个组件来定义系统的功能。本文介绍了选择组件的方法以及在生产过程中测试系统的方法。最后,系统必须满足客户的要求。所讨论的机电一体化系统是在数字工厂中创建的工业产品。 关键词 机电一体化组件、设计结构、硬件和软件接口、多学科集成设计。 1. 引言 机电一体化是多个工程学科的一个分支,专注于电气和机械系统工程。这是关于机器人、电子、计算机、电信、系统、控制和产品工程的术语。该术语为技术和实际考虑提供了基础。日本安川电机的工程师 Tetsuro Mori 引入了“机电一体化”一词。此外,还注册了商标号“46-32714”。[1] 这家日本公司后来允许在公共场合使用该词,此后该术语开始在全球范围内使用。在词典中,该术语于 2005 年在拉鲁斯(法国)正式出现。如今,该词被翻译成多种语言,被认为是该行业必不可少的术语。[2] 法国标准 NF E 01-010(2008)将机电一体化定义为“在产品设计和制造中协同整合机械、电子、自动化和计算以增加和/或优化其功能的方法”。许多人将机电一体化视为一个现代词汇,与机器人或机电工程同义。机电一体化这一术语的使用表明了一个快速发展的跨学科工程领域。它涉及基于控制架构协调的机械和电子元件集成的产品功能设计。[3]
曲线)。相关的声感应电压信号显示为绿点,即所谓的 AE 命中。每个命中的峰值幅度以 dB AE 为单位绘制(参考值 1 μV)。在给定的示例中,时间相关的力曲线在接触力高达约 230 mN 时是非线性的,同时在阈值电压 U th 23 dB AE 以上测量到大量 AE 命中。这种影响是由于压头随着接触载荷的增加而穿透 Al-Cu 顶层,该顶层发生塑性变形并且压痕深度不断增加(见图 7a)。AE 命中的数量及其峰值幅度随着穿透深度的增加而减少。在接触力超过 230 mN 时,只会发生孤立的低幅度命中。在 Al-Cu 顶层上压痕时 SiO x 层开始开裂,接触力 F c 为 367 mN,峰值幅度 A peak 为 55.9 dB AE 。图 6b 绘制了裂纹诱发的 AE 冲击的示例性波信号及其整个信号持续时间。[1]