d 澳大利亚莫纳什大学心理科学学院 摘要 在磁共振成像 (MRI) 中,图像采集通常在测量域中欠采样以加速扫描过程,但会牺牲图像质量。然而,图像质量是影响临床诊断准确性的关键因素;因此,从欠采样测量中进行高质量的图像重建一直是一个关键的研究领域。最近,深度学习 (DL) 方法已成为 MRI 重建的最新技术,通常涉及深度神经网络通过数据驱动的过程将欠采样的 MRI 图像转换为高质量的 MRI 图像。尽管如此,在消除混叠伪影和降低图像噪声方面,欠采样 DL MRI 重建仍有明显且巨大的改进空间,以满足临床诊断所需的高标准。在本文中,我们引入了一种使用对比学习的自监督预训练程序来提高欠采样 DL MRI 重建的准确性。我们使用对比学习将 MRI 图像表示转换为潜在空间,该潜在空间最大化不同欠采样表示之间的相互信息,并优化下游 DL 重建模型输入处的信息内容。我们的实验表明,在一系列加速因子和数据集上,重建精度都有所提高,无论是定量还是定性。此外,我们的扩展实验验证了所提出的框架在对抗条件下的稳健性,例如测量噪声、不同的 k 空间采样模式和病理异常,并证明了在具有完全不同解剖结构的 MRI 数据集上的迁移学习能力。此外,我们还进行了实验来可视化和分析所提出的 MRI 对比学习潜在空间的属性。代码可在此处获得。关键词:对比学习潜在空间、相互信息最大化、欠采样 MRI 重建、深度学习模型、重建精度
迄今为止,所有暗物质 (DM) 存在的证据都是通过其与可见物质的引力耦合获得的。另一方面,迄今为止所有对暗物质的直接探测搜索都必须假设与标准模型存在一些额外的耦合,例如 WIMP 的弱核耦合,或轴子的胶子/光子耦合。一个明显可取的目标是直接通过其引力耦合来搜索粒子 DM。最近,有人提出,通过地面实验 [1–3] 可以实现纯引力直接探测策略,尽管这非常具有挑战性。这一想法利用了光学或微波光机械传感设备的量子读出和控制方面令人难以置信的快速进展 [4–6]。这些设备已被证明是一个有前途的平台,可用于搜索大量暗物质候选者 [7],涵盖超轻 [8–11]、轻 [12] 以及 WIMP 级和更重的质量范围 [13]。特别是,参考文献 [14]。 [3] 表明,由至少 10 6 个机械传感器组成的大型阵列,每个传感器的质量在克级左右,可以对质量在普朗克尺度 m Pl ≈ 2 × 10 18 GeV ≈ 4 µg 左右的暗物质的引力特征敏感。有关这些超重暗物质候选者的概述,请参阅 Snowmass 2021 社区白皮书 [14]。在这份 Snowmass 白皮书中,我们概述了一项新兴的实验工作,我们将其称为 Windchime 项目,以开发此类暗物质探测器。核心计划是并行构建和操作许多量子限制机械加速度计阵列。这样的系统将能够独特地搜索大量有趣的信号,而引力暗物质探测是一个非常长期的目标。需要进行许多技术开发,涉及四个关键方面:热隔离、低于标准量子极限的量子测量噪声、传感器数量及其读数的扩展以及来自许多探测器的连续数据流的数据处理和分析技术。在开发这些技术的过程中,将实现许多短期物理机会,并且除了寻找暗物质之外,研发计划还将有大量应用。我们概述了技术挑战、物理机会、我们目前的努力以及实现长期计划的途径。
我们提出了一个控制理论框架来研究嵌入在模拟环境中的生物驱动人工神经系统(Sussillo,2014)的稳定性和可控性。从高层的角度来看,这个框架模拟了脑-机-环境的相互作用。我们首先考虑建模一个神经系统在虚拟环境中执行行为任务的问题。用控制理论的语言来说,神经系统与环境过程形成一个闭环反馈控制器。在第二步中,我们模拟神经系统的退化(例如在传感器或执行器处)并添加一个二级控制器(假肢),目的是恢复行为功能。在此过程中,我们考虑了大脑模型中的不确定性、非线性、测量噪声以及可观察状态和可控神经元的有限可用性。神经系统,从单个神经元到大规模群体,都以复杂的动态为特征,建模和控制可能具有挑战性(Ritt and Ching,2015)。经典控制理论(Khalil,2002;Brunton 和 Kutz,2017;Astrom 和 Murray,2020)为设计控制律提供了强大的工具,并在神经技术领域得到广泛应用,例如机械臂或计算机光标的闭环脑机接口 (BMI) 控制(Shanechi 等人,2016)、癫痫发作缓解的模型预测控制(Chatterjee 等人,2020)以及大脑在认知状态之间转换的机制解释(Gu 等人,2015)。闭环控制的一个特别成功的应用是通过深部脑刺激治疗帕金森病。在那里,可以使用基于阈值、比例积分或自调节控制器将病理性 β 波段振荡活动抑制在所需的目标水平(Fleming 等人,2020a、b)。 Schiffi (2011) 建立了一种将控制理论与神经科学和生物医学联系起来的典型方法,其中时空皮质动态模型与卡尔曼滤波器相结合,以估计未观察的状态并跟踪未知或漂移的模型参数。神经形态社区中的团队最近通过实现生物学上合理的操作和学习状态估计和控制规则(Friedrich 等人,2021;Linares-Barranco 等人,2022)以及神经形态 BMI 电路(Donati 和 Indiveri,2023)为这项工作做出了贡献,这有望在低功耗运行时实现更好的生物相容性。在上述许多方法中反复出现的一些挑战是线性(可实现)或低维系统的假设、对底层动态的知识或所需目标状态的可用性(如帕金森病的 DBS)。本文针对这些局限性做出了两项主要贡献。首先,我们建议一致使用动力系统来模拟大脑、环境、和假肢。除了统一方法论之外,这种选择还可以灵活地对不同程度的真实模型进行实验。在这里,我们展示了循环神经网络 (RNN) 作为神经系统和假肢的简单、高度可扩展的构建块的使用。其次,我们逐步消除了线性、系统知识、完全可观测性和监督目标状态的假设,通过使用强化学习 (RL)(Sutton 和 Barto,2020 年)进行系统识别和合成假肢控制器。
一个人可以设计并自动化一个计算和实验平台,以便每个平台迭代指导并驱动另一个平台以实现预定的目标?Rapp及其同事(2024)在论文中仅描述了这种可能性,该论文详细介绍了一个自动驱动实验室的原型,该实验室可以自动导航,以产生具有所需属性的工程酶。这个实验室,而不是自动化协议,用缩写词来提及。这是指用于蛋白质景观探索的自动驾驶自动驾驶机器。本文描述了一个原型,涉及糖苷水解酶的工程,以增强热稳定性。“大脑”是该自动化系统背后的计算组件,旨在从策划的数据集学习蛋白质序列 - 功能关系。然后,通过一个全自动的机器人系统评估了这些设计蛋白,该蛋白可以合成并实验表征设计的蛋白质,并向代理(即计算成分)提供反馈,以填补其对系统的理解。因此,设计样品剂是通过在搜索过程中积极获取信息来不断地重新理解对蛋白质景观的理解。由于该智能代理从一个精心策划的,多样化的数据集中学习蛋白质序列 - 功能关系,因此根据更新的假设,这种反馈对于重新景观探索和新蛋白质的设计至关重要。在此原型中,将四个样品剂的任务承担了此目标。单个药物的搜索行为差异主要是由实验测量噪声引起的。这些药物的目标是导航糖苷水解酶景观,并以增强的热耐受性鉴定酶。然而,尽管他们的搜索行为有所不同,但所有四个代理都可以在热稳定糖苷水解酶上融合 - 这是显着的壮举,因为它显然不需要任何人类干预。为了启动迭代设计过程,Rapp及其同事用糖苷水解酶序列喂养样品,具有工程热耐受性的靶标。使用在可抑制和热固醇糖苷水解酶进行的实验中的非常最小的信息,以蛋白质耐受景观呈现样品(Romero and Arnold 2009)。蛋白质富度景观描述了从序列到类似于峰,山谷和山脊的陆地景观的映射,该目标是达到拟合度更高的自适应峰。至关重要的输入来自一个反馈周期,其中代理查询环境以收集信息,从而改善了内部对景观的看法。从这个意义上讲,蛋白质工程代理的任务是贝叶斯优化的任务,其中未知的目标函数与探索和开发之间的有效平衡(作者称为权衡)相息。样品以部署高斯工艺(GP)模型,以探索景观并提取可以描述序列水平上的可热稳定蛋白与中序蛋白有何不同的信息(Romero等2013)。使用贝叶斯优化(BO)技术,此信息启用了迭代设计蛋白质序列的样品。作者还设计了几种BO方法,以说明缺乏丰富的实验数据。这方面通常至关重要,因为人工工程/机器学习(AI/ML)工具需要一个大型,多样化的数据集有效。首先使用基于GP模型的分类器来识别功能序列,然后采用了上层信心结合算法来选择实验验证的顶级序列(Dauparas等人。2022)。使用预先合成的基因片段组装了新型工程酶,即设计的序列。该策略本身在合成生物学的高通量平台中很普遍。