在各种平民和军事应用中,例如监视,检查,搜索和救援,机器人系统变得重要并变得越来越有用。尤其是,始终期望良好发达的自主系统使人免受危险和未知环境中的操作风险。但是,对于自主系统操作,具有此类特征的环境通常更具挑战性。例如,在受GPS有限的环境中,需要机器人来估计其状态并仅在传感器测量上做出决定,而无需访问精确的位置信息[1]。在工业场景中具有复杂的结构化环境,具有移动的人类和机器人,如图1,需要自主无人机才能在混乱的环境中导致其目标,并确保与人类的安全。因此,一个稳定的无人机硬件平台和安全的轨迹计划软件框架对于处理复杂的环境结构,动态障碍以及来自测量噪声和无法预测的移动障碍行为至关重要[2]。
摘要 考虑到连续弱测量过程中测量噪声的存在,建立了在线量子态层析成像(QST)的优化问题并给出了相应的约束条件。基于在线交替方向乘子法(OADM)和连续弱测量(CWM),设计并推导了一种在线 QST 算法(QST-OADM)。具体来说,将在线 QST 问题分解为量子态和测量噪声两个子问题。所提算法采用自适应学习率,将计算复杂度降低至 O(d3),为实时量子态层析成像提供更高效的机制。与现有的大多数基于 CWM 的在线 QST 算法相比,所提 QST-OADM 每次采样时都可以精确地求解两个子问题,而现有的 QST 算法在每次估计时都需要进行耗时的迭代。对 1、2、3 和 4 量子比特系统的在线 QST 的数值实验证明了所提算法的有效性。
摘要 脑机接口应用可用于克服学习问题,尤其是学生焦虑、注意力不集中和注意力不集中。本文介绍了一种基于脑机接口(BCI)的系统,该系统用于教育,以衡量预期学习成果并测量噪声对系统准确度的影响。该系统在线工作,基于记录的脑信号数据集。该系统可被视为 P300 拼写器的一个特例,仅接受从 A 到 D 的字母。这些是多项选择题 MCQ 的可能答案。老师出题,将其存储在考试数据库中并交给学生。学生进入系统并记录他们的脑信号。脑信号经过预处理阶段,在此阶段信号经过低通和高通滤波器。然后对信号进行子采样和分割。获得的特征用作线性判别分析(LDA)的输入。获得的准确率为 91%。
(1) 电气特性表值仅适用于所示温度下的工厂测试条件。因子测试条件导致器件自热非常有限,例如 TJ=TA。在 TJ>TA 的内部自热条件下,电气表中不保证参数性能。绝对最大额定值表示结温极限,超过该极限,器件可能会永久退化,无论是机械还是电气。(2) 极限由 25 摄氏度下的测试、设计或统计分析确保。工作温度范围内的极限通过使用统计质量控制 (SQC) 方法的相关性来确保。(3) 典型值表示在特性确定时确定的最可能的参数标准。实际典型值可能随时间而变化,也取决于应用和配置。典型值未经测试,不保证在出厂生产材料上有效。(4) 有效分辨率是转换器满量程范围与 RMS 测量噪声之比。(5) 未连接外部电容。5.6 I 2 C 接口电压电平
摘要 — 本文介绍了一种基于物联网 (IoT) 网络和机器学习算法设计定制解决方案以检测不同工业应用中的罕见事件的通用方法。我们提出了一个基于三层(物理、数据和决策)的通用框架,该框架定义了可能的设计选项,以便可以超可靠地检测到罕见事件/异常。然后将这个通用框架应用于一个众所周知的基准场景,即田纳西伊士曼过程。然后,我们在与数据处理相关的三个线程下分析这个基准:采集、融合和分析。我们的数值结果表明:(i)事件驱动的数据采集可以显著减少样本数量,同时过滤测量噪声,(ii)互信息数据融合方法可以显著减少变量空间,(iii)用于数据分析的定量关联规则挖掘方法对于罕见事件的检测、识别和诊断是有效的。这些结果表明,集成解决方案的优势在于,该解决方案根据所提出的一般三层框架共同考虑了不同级别的数据处理,包括要采用的通信网络和计算平台的细节。
系统(GPS)信号确定登机上的精确定位和时机。与以仪表级准确性利用伪龙的先前作品不同,我们提出了一种精确的定位和计时技术,该技术利用毫米级的准确性来利用载载相 - 相位测量(当整数模棱两可正确地固定时)。我们设计了一个扩展的Kalman FIL TER框架,该框架利用间歇性可用的陆地GPS时间差异载体相(TDCP)值(TDCP)值和轨道过滤器预测的重力加速度。为了估算过程噪声协方差,我们实施了一种自适应状态噪声补偿算法,该算法适应了挑战性的月球环境,其重力较弱,并且每个涡轮型强大。此外,我们执行测量残差分析,以丢弃被周期滑动损坏并增加测量噪声损坏的TDCP测量。我们介绍了在椭圆形的月球轨道上的月球卫星的蒙特卡洛模拟,与唯一的导航解决方案相比,我们展示了更高的定位和时机准确性。
摘要:本文考虑了水下目标的定位,其中放置了许多声纳浮标来测量目标声音的方位。声纳浮标的方位精度非常低,例如 10 度。在实践中,我们可以使用多个异构声纳浮标,这样传感器噪声的方差可能与另一个传感器的方差不同。此外,一个传感器的最大感应范围可能与另一个传感器的最大感应范围不同。如果传感器检测到目标的方位,则真实目标必须存在于传感器的感应范围内。为了基于低精度的方位测量来估计目标位置,本文介绍了一种基于多个虚拟测量集 (VMS) 的新型目标定位方法。这里,每个 VMS 都是考虑到每个声纳传感器的方位测量噪声而得出的。据我们所知,本文在基于低精度的异构声纳浮标传感器定位目标的 2D 位置方面是新颖的,考虑到传感器的最大感应范围。通过使用计算机模拟将所提出的定位方法与其他最先进的定位方法进行比较,验证了所提出的定位方法的优越性(同时考虑时间效率和定位精度)。
摘要:异常检测是一种至关重要的技术,用于探索大型强子对撞机(LHC)的标准模型(BSM)以外的新物理学的特征。LHC产生的大量碰撞需要复杂的深度学习技术。相似性学习是一种自我监督的机器学习,通过估计其与背景事件的相似性来检测异常信号。在本文中,我们通过相似性学习探讨了量子计算机对异常检测的潜力,利用量子计算的力量来增强已知的相似性学习方法。在嘈杂的中间量子量子(NISQ)设备的领域中,我们采用了混合经典的量词网络来搜索Di-Higgs生产渠道中的重标量共振。在没有量子噪声的情况下,混合网络表现出对已知相似性学习方法的改善。此外,我们采用了一种聚类算法来减少有限射击计数的测量噪声,从而导致混合网络性能提高了9%。我们的分析强调了量子算法在LHC数据分析中的适用性,其中随着耐断层量子计算机的出现,预计会进行改进。
摘要:本文考虑了水下目标的定位,其中放置了许多声纳浮标来测量目标声音的方位。声纳浮标的方位精度非常低,例如 10 度。在实践中,我们可以使用多个异构声纳浮标,这样传感器噪声的方差可能与另一个传感器的方差不同。此外,一个传感器的最大感应范围可能与另一个传感器的最大感应范围不同。如果传感器检测到目标的方位,则真实目标必须存在于传感器的感应范围内。为了基于低精度的方位测量来估计目标位置,本文介绍了一种基于多个虚拟测量集 (VMS) 的新型目标定位方法。这里,每个 VMS 都是考虑到每个声纳传感器的方位测量噪声而得出的。据我们所知,本文在考虑传感器的最大感应范围的情况下,基于低精度的异构声纳浮标传感器对目标的 2D 位置进行定位方面是新颖的。通过使用计算机模拟将所提出的定位方法与其他最先进的定位方法进行比较,验证了所提出的定位方法的优越性(同时考虑时间效率和定位精度)。
我们提出了一种通用的去噪算法,用于同时对量子态和测量噪声进行层析成像。该算法使我们能够充分表征任何量子系统中存在的状态准备和测量 (SPAM) 误差。我们的方法基于对由幺正运算引起的线性算子空间的属性的分析。给定任何具有噪声测量设备的量子系统,我们的方法可以输出探测器的量子态和噪声矩阵,最高可达单个规范自由度。我们表明,这种规范自由度在一般情况下是不可避免的,但这种退化通常可以使用关于状态或噪声属性的先验知识来打破,从而为几种类型的状态噪声组合固定规范,而无需对噪声强度进行假设。这样的组合包括具有任意相关误差的纯量子态,以及具有块独立误差的任意状态。该框架可以进一步使用有关设置的可用先验信息来系统地减少状态和噪声检测所需的观察和测量次数。我们的方法有效地推广了现有的解决问题的方法,并且包括了文献中考虑的需要不相关或可逆噪声矩阵或特定探测状态的常见设置作为特殊情况。