摘要 - 对电荷状态(OCV-SOC)特征的开路电压对于电池管理系统至关重要。使用OCV-SOC曲线,可以实时估算SOC和电池容量。准确的SOC和容量信息对于执行大多数电池管理功能很重要,以确保安全,高效且可靠的电池组电源系统。文献中已经报道了许多方法,以改善SOC估计和电池容量估计。这些方法着眼于各种估计和过滤技术,以减少由于滞后和放松效应而导致的测量噪声和不确定性的影响。即使所有现有的SOC估计方法都取决于OCV-SOC的表征,但很少关注OCV-SOC表征错误的可能性以及OCV-SOC曲线对SOC和容量估计的不确定性的影响。在本文中,这是一系列三篇论文的第一部分,讨论了整个电池管理系统中OCV-SOC建模误差的效果。OCV-SOC曲线中不确定性的不同来源包括细胞间变化,温度变化,老化漂移,周期速率效应,曲线拟合误差和测量/估计误差。建议的不确定性模型可以纳入电池管理系统中,以提高其安全性,性能和可靠性。索引项 - OCV-SOC建模,OCV建模,OCV-SOC表征,OCV表征,锂离子电池,电荷估计,电池管理系统。
摘要变分混合量子经典算法 (VHQCA) 是利用经典优化来最小化成本函数的近期算法,该算法可以在量子计算机上进行有效评估。最近,VHQCA 已被提出用于量子编译,其中目标幺正 U 被编译成短深度门序列 V。在这项工作中,我们报告了这些算法一种令人惊讶的噪声弹性形式。也就是说,我们发现尽管在成本评估电路中存在各种不相干噪声源,但人们经常会学习正确的门序列 V(即正确的变分参数)。我们的主要结果是严格的定理,指出最佳变分参数不受广泛噪声模型的影响,例如测量噪声、门噪声和泡利通道噪声。此外,我们在 IBM 噪声模拟器上的数值实现在编译量子傅里叶变换、Toffoli 门和 W 态准备时表现出弹性。因此,变分量子编译由于其稳定性,对于噪声较大的中型量子设备具有实际用途。最后,我们推测这种抗噪声能力可能是一种普遍现象,适用于其他 VHQCA,例如变分量子本征解算器。
电路中间测量 (MCM) 是容错量子计算发展中的关键因素。虽然在实现 MCM 方面取得了快速的实验进展,但表征噪声 MCM 的系统方法仍在探索中。在这项工作中,我们开发了一种循环基准 (CB) 型算法来表征噪声 MCM。关键思想是对经典和量子寄存器进行联合傅里叶变换,然后估计傅里叶空间中的参数,类似于 CB 型算法中用于表征 Clifford 门的 Pauli 噪声通道的 Pauli 保真度。此外,我们开发了一种 MCM 噪声可学习性的理论,该理论确定了哪些信息可以学习噪声模型(在存在状态准备和终止测量噪声的情况下)以及哪些信息不能学习,这表明所有可学习的信息都可以使用我们的算法来学习。作为一种应用,我们展示了如何使用学习到的信息来测试 MCM 中测量噪声和状态准备噪声之间的独立性。最后,我们进行数值模拟来说明该算法的实际适用性。与其他 CB 型算法类似,我们希望该算法能够提供一个具有实验意义的有用工具包。
锂离子电池(LIB)在各种磁场中发现了广泛的应用,例如电气传输,固定存储和便携式电子设备。电池管理系统(BMS)对于确保LIB的可靠性,效率和寿命至关重要。最近的研究见证了高级BMS中基于模型的故障诊断方法的出现。本文对LIB的基于模型的故障诊断方法进行了全面综述。首先,现有文献中广泛探索的电池模型分为基于物理学的电化学模型和电气等效电路模型。第二,描述电池故障的电气动力学的一般状态空间表示。然后详细阐述了状态向量和参数矩阵的识别。第三,两个电池故障的故障机理(包括过度拨动/过度过度故障,连接故障,短路故障)和传感器故障(包括电压传感器故障和电流传感器故障)。此外,还详细阐述了不同类型的建模不确定性,例如建模误差和测量噪声,老化效应,测量异常值。然后将重点放在观察者的设计上(包括在线状态观察员和离线状态观察员)。还提出了用于电池故障诊断的典型状态观察者的算法实现。最后,提供了讨论和展望来设想一些可能的未来研究方向。
摘要:了解火星卫星的内部结构(例如,均质、多孔或破碎)将有助于更好地理解它们的形成以及早期太阳系。推断内部结构的一种方法是通过大地测量特征,例如重力场和天平动。大地测量参数可以从辐射跟踪测量中得出。本研究提出了一种可行的母舰-立方体卫星任务,其目的如下:(1)进行卫星间多普勒测量,(2)提高对火卫一及其动态模型的理解,(3)确保母舰和主要任务的安全,(4)考虑到地球和火星之间的距离,支持自主导航。本研究分析了体积、质量、功率、部署∆v和链路的预算以及系统的多普勒测量噪声,并给出了立方体卫星的可行设计。通过考虑所有不确定性的蒙特卡罗估计模拟揭示了轨道确定和大地测量的准确性。在火星-火卫一系统星历误差为 0 至 2 公里的情况下,自主轨道确定的精度为 0.2 米至 21 米和 0.05 毫米/秒至 0.4 厘米/秒。即使在星历误差为 2 公里的情况下,大地测量系统也可以以 1‰ 的精度返回 2 级重力系数。所获得的重力系数和平动幅度协方差表明,区分内部结构系列具有极好的可能性。
1 伊斯坦布尔技术大学航空航天学院,34469 伊斯坦布尔,土耳其,收到日期:2022 年 3 月 24 日 修订日期:2022 年 6 月 8 日 接受日期:2022 年 6 月 20 日 摘要 Özet 在本研究中,提出了一种集成自适应 TRIAD/扩展卡尔曼滤波器 (EKF) 姿态估计系统,其中 TRIAD 和自适应 EKF 相结合以估计纳米卫星的姿态。作为系统的第一步,TRIAD 算法利用磁力计和太阳传感器测量结果产生初始粗四元数估计,然后将该粗估计直接输入到自适应 EKF。将姿态信息直接输入到滤波器相对减少了 EKF 带来的计算负担。作为系统的第二步,自适应 EKF 滤波 TRIAD 解并给出最终的四元数估计。同时,自适应 EKF 在传感器故障时使用单个缩放因子 (SSF) 重新调整测量噪声协方差矩阵,使整个系统对传感器故障更具鲁棒性。进行了几次模拟,并针对两种不同的故障类型(即姿态传感器中的噪声增量和连续偏差)测试了所提出的系统的性能。
纠缠是量子技术的宝贵资源。在计量学中,纠缠探针比非纠缠探针能进行更精确的测量 [ 1 – 6 ]。除了使用纠缠探针来增强对单个参数的测量之外,利用纠缠来同时估计多个参数或这些参数的函数最近也引起了人们的兴趣,因为它在纳米级核磁共振成像等任务中具有潜在的应用价值 [ 7 – 15 ]。在本文中,我们致力于推广参考文献 [ 15 ] 的工作,该工作证明了与 d 个量子比特耦合的 d 个参数的线性组合的估计量的方差下限。我们将这种方法推广到测量 d 个参数的任意实值解析函数,并且我们表明纠缠可以将这种估计的方差降低 O(d) 倍。最后,我们提出了一种在长测量时间极限内渐近地实现最优方差的协议。此外,当参数耦合到 d 干涉仪或干涉仪和量子比特的组合时,我们提出了一种类似的海森堡缩放协议来改善测量噪声。然而,在这种情况下,我们缺乏最优性的证明。我们还可以使用参考文献 [ 16 ] 中提出的协议将参数耦合到通过同差测量检测到的连续变量。我们还将研究这种协议在场插值中的应用。假设 se
与常规摄像机相比,事件摄像机代表了神经形态成像技术的值得注意的进步,由于其独特的优势,研究人员引起了很大的关注。但是,事件摄像机容易受到显着水平的测量噪声,这可能会对依赖于事件流的算法的性能降低,例如感知和导航。在这项研究中,我们介绍了一种新颖的方法来降级事件流,目的是填写未能准确反映出真正的对数强度变化的事件。我们的方法着重于事件的异步性质和时空特性,最终导致了新型异步时空事件的发展神经网络(ASTEDNET)。该网络直接在事件流上运行,规避将事件流转换为图像帧等密集格式的需求,从而保留其固有的异步性质。借助图形编码和时间卷积网络的原理,我们结合了时空特征注意机制,以捕获事件之间的时间和空间相关性。这可以使原始流中每个活动事件像素的分类为代表真正的强度变化或噪声。在多个数据集上针对最先进方法进行的比较评估表明,我们所提出的算法在消除噪声方面具有显着的效率和鲁棒性,同时将有意义的事件信息保留在场景中。
在本论文中,我介绍了使用Ytterbium-171原子的单个或多个集合及其用于量子计量和量子信息科学研究的开发。我们开发和研究描述CQED旋转系统的统一理论框架。我们统一了腔光的两个主要作用:原子状态的测量和产生纠缠的催化剂。获得的模型与实验结果非常吻合。我们利用此框架来实施和优化各种量子测量应用。以理论模型引导的优化参数,我们在Ytterbium原子的基态歧管中实现了几乎单位的自旋挤压。我们观察到的计量学增益为6.5(4)dB,而所推断的没有限制的计量学收益可以达到13dB。在第二个实验中,与RF-Clock相比,我们将纠缠从基态歧管转移到光钟的10 5倍和更高的相对精度,将纠缠从基态歧管转移到光学时钟过渡。我们推断出4.4dB的性能改进,这是量子纠缠辅助光时操作的首次演示。我们还实施了基于时间反转的量子计量协议。我们将这种方法构成有益于实用量子计量学,因为它通过放大信号而不是减少噪声来提高信噪比。值得注意的是,它对测量噪声不敏感,这是先前实验中的主要限制。我们可以一致,均匀准备使用时间逆转协议,我们观察到了12.8(9)DB计量学的增益和创纪录的高11.8(5)DB的相位灵敏度增益。我们将其进一步带入量子信息科学。我们探索了超时有序的相关器(OTOC),这是量子信息“争夺”到整个量子多体系统中的速度的基准。我们证明,时间反转方法可以有效地使用量子拼凑而成的快速动力学作为改善信号的一种方式。总的来说,我们已经构建并升级了该实验室的机器,以便能够形成复杂的量子实验。
目的:我院于2021年2月引进的计算机断层扫描(CT)设备增加了利用人工智能(AI)技术的新型图像重建方法。这种重建方法被称为深度学习重建(Deep Learning Reconstruction,以下简称DLR),佳能称之为高级智能Clear-IQ引擎(Advanced intelligent Clear-IQ Engine,以下简称AiCE)。本研究的目的是评估各重建方法的物理特性和实用性,例如利用AI技术的新型图像重建方法AiCE和目前我院使用的迭代重建方法自适应迭代剂量减量3D(以下简称AIDR 3D)。 方法:通过(1)噪声评估(使用径向频率法测量噪声功率谱(NPS))、(2)低对比度分辨率评估(使用自制模型测量对比度噪声比(CNR))和(3)空间分辨率评估(使用圆边缘法测量调制传递函数(MTF))(1)来评估物理特性。假设成像条件为腹部区域,改变管电流来比较四种重建方法(滤波反投影 (FBP)、AIDR 3D Mid、AIDR 3D 增强 Mid 和 AiCE Body Mid)。 结果:在 NPS、CNR 和 MTF 测量中,AiCE 通常在所有 mAs 值下均显示出最佳结果。然而,在 NPS 测量的低频区域,AiCE 与其他重建方法相比并没有表现出显著差异。 此外,当比较 AIDR 3D 和 AiCE 的重建时间时,AiCE 所花的时间是 AIDR 3D 的 3 到 4 倍。 结论:本研究中,AiCE 在腹部条件下检查的三个物理特性方面优于 AIDR 3D,并且在图像质量方面有用。然而,在考虑重建时间时,需要考虑AiCE图像的运行可能会影响检查进度的可能性。