当前,现代通信和导航系统中的紧急任务之一是提高各种设备之间时间尺度的同步精度[1-9]。这对于在进行地球表面,高层大气层,高速信息的传播和处理的调查过程中获得可靠的结果是必不可少的[7-17]。取决于时间尺度同步所需的准确性,系统中使用了不同的频率标准模型。解决此问题的最佳解决方案是使用量子频率标准(QFS)。在各种导航系统的量子频率标准中,最流行的是rubidium QF,因为与其他类型的QF相比,它们的尺寸较小,成本较低。这些关键优势允许使用由小型rubidium手表组成的rubidium标准,这些手表在移动通信的基站和通信卫星的船件上广泛使用[4,18-21]。这样的系统应该长时间自主工作。因此,用于其中的信息处理,用于各种光学系统[20-26]。
我们引入了一个新框架,用于从脑记录中超现实地重建感知到的自然刺激。为此,我们在神经解码流程的最早阶段采用了生成对抗网络 (GAN),通过获取功能性磁共振成像数据作为受试者感知的由 GAN 的生成器网络创建的面部图像。随后,我们使用线性解码方法从脑数据中预测 GAN 的潜在状态。因此,获得了刺激 (重新) 生成所需的潜在表示,从而实现了突破性的图像重建。总之,我们开发了一种非常有前途的方法来解码现实世界数据的神经表征,这可能为系统地分析功能性大脑中的神经信息处理铺平道路。
1. 英国牛津大学纳菲尔德妇女与生殖健康系 2. 英国牛津大学格林坦普顿学院牛津孕产妇与围产期健康研究所 3. 英国牛津大学博特纳研究中心医学统计中心 4. 英国牛津大学生物医学工程研究所工程科学系 5. 巴西佩洛塔斯天主教大学健康与行为学研究生项目。 6. 肯尼亚内罗毕阿迦汗大学健康科学学院。 7. 阿曼苏丹国马斯喀特卫生部家庭与社区卫生司 8. 意大利都灵健康与科学城 SC Ostetricia 2U 9. 印度那格浦尔凯特卡医院那格浦尔 INTERGROWTH-21 世纪研究中心 10. 北京大学公共卫生学院,中国北京 11. 阿联酋沙迦大学临床营养与饮食学系 12. 美国西雅图儿童医院全球预防早产与死产联盟 (GAPPS),西雅图 98105 WA 13. 法国巴黎巴黎笛卡尔大学内克尔儿童疾病医院产科与胎儿医学系 14. 加拿大多伦多儿童医院全球儿童健康中心
1 2 3 4 MD-82 商用客机头等舱的精确高分辨率边界条件和流场 6 7 刘伟 1 , 温继洲 1 , 赵江月 1 , 尹伟友 1 , 沈晨 1 , 赖代一 1 , 林朝欣 8 2 , 刘俊杰 1 , 孙河江 1,* 陈庆艳 1,3 9 10 1 天津大学环境科学与工程学院,天津 300072,11 中国 12 2 波音民用飞机环境控制系统,华盛顿州埃弗里特 98203,美国 13 3 普渡大学机械工程学院,印第安纳州西拉斐特 47907,美国 14 15 * 电子邮件地址:sunhe@tju.edu.cn 16 17 摘要 18 19商用客机客舱对于创造热舒适和健康的客舱环境至关重要。除了客舱几何形状和家具外,流场还取决于扩散器处的热流体边界条件。为了研究客舱内的流场,本文介绍了一种获取客舱几何形状、扩散器边界条件和流场的程序。本研究使用激光跟踪系统和逆向工程生成了 MD-82 飞机客舱的数字模型。尽管该系统的测量误差很小,但仍然需要近似和假设以减少工作量和数据量。几何模型还可用于轻松计算空间体积。采用热球风速计 (HSA) 和超声波风速计 (UA) 组合来获取扩散器处的速度大小、速度方向和湍流强度。测量结果表明,实际客舱内的流动边界条件相当复杂,速度大小、速度方向和湍流强度在不同缝隙开口之间差异很大。还使用 UA 测量 20 Hz 下的三维空气速度,这也可用于确定湍流强度。由于流动的不稳定性,应至少测量 4 分钟才能获得准确的平均速度和湍流信息。结果发现,流场速度低、湍流强度高。这项研究为验证计算流体力学 (CFD) 模型提供了高质量数据,包括客舱几何形状、扩散器边界条件和 MD-82 商用客机头等舱的高分辨率流场。 关键词:客机客舱;客舱几何形状;流场;实验;扩散器 41 42 1. 引言 43 44 商用客机客舱中的空气分布用于维持乘客和机组人员的热舒适度 45 和空气质量。这些空气分布可以控制空气温度和 46 空气速度场,并可以稀释气体和颗粒浓度。尽管 47 航空航天工业在过去 48 十年中已经改善了飞机客舱的热舒适度和卫生状况(Space et al.,2000),空气分配系统需要进一步改进。49
1 2 3 4 MD-82 商用客机头等舱的精确高分辨率边界条件和流场 6 7 刘伟 1 , 温继洲 1 , 赵江月 1 , 尹伟友 1 , 沈晨 1 , 赖代一 1 , 林朝欣 8 2 , 刘俊杰 1 , 孙河江 1,* 陈庆艳 1,3 9 10 1 天津大学环境科学与工程学院,天津 300072,11 中国 12 2 波音民用飞机环境控制系统,华盛顿州埃弗里特 98203,美国 13 3 普渡大学机械工程学院,印第安纳州西拉斐特 47907,美国 14 15 * 电子邮件地址:sunhe@tju.edu.cn 16 17 摘要 18 19商用客机客舱对于创造热舒适和健康的客舱环境至关重要。除了客舱几何形状和家具外,流场还取决于扩散器处的热流体边界条件。为了研究客舱内的流场,本文介绍了一种获取客舱几何形状、扩散器边界条件和流场的程序。本研究使用激光跟踪系统和逆向工程生成了 MD-82 飞机客舱的数字模型。尽管该系统的测量误差很小,但仍然需要近似和假设以减少工作量和数据量。几何模型还可用于轻松计算空间体积。采用热球风速计 (HSA) 和超声波风速计 (UA) 组合来获取扩散器处的速度大小、速度方向和湍流强度。测量结果表明,实际客舱内的流动边界条件相当复杂,速度大小、速度方向和湍流强度在不同缝隙开口之间差异很大。还使用 UA 测量 20 Hz 下的三维空气速度,这也可用于确定湍流强度。由于流动的不稳定性,应至少测量 4 分钟才能获得准确的平均速度和湍流信息。结果发现,流场速度低、湍流强度高。这项研究为验证计算流体力学 (CFD) 模型提供了高质量数据,包括客舱几何形状、扩散器边界条件和 MD-82 商用客机头等舱的高分辨率流场。 关键词:客机客舱;客舱几何形状;流场;实验;扩散器 41 42 1. 引言 43 44 商用客机客舱中的空气分布用于维持乘客和机组人员的热舒适度 45 和空气质量。这些空气分布可以控制空气温度和 46 空气速度场,并可以稀释气体和颗粒浓度。尽管 47 航空航天工业在过去 48 十年中已经改善了飞机客舱的热舒适度和卫生状况(Space et al.,2000),空气分配系统需要进一步改进。49
1 2 3 4 MD-82 商用客机头等舱的精确高分辨率边界条件和流场 6 7 刘伟 1 , 温继洲 1 , 赵江月 1 , 尹伟友 1 , 沈晨 1 , 赖代一 1 , 林朝欣 8 2 , 刘俊杰 1 , 孙河江 1,* 陈庆艳 1,3 9 10 1 天津大学环境科学与工程学院,天津 300072,11 中国 12 2 波音民用飞机环境控制系统,华盛顿州埃弗里特 98203,美国 13 3 普渡大学机械工程学院,印第安纳州西拉斐特 47907,美国 14 15 * 电子邮件地址:sunhe@tju.edu.cn 16 17 摘要 18 19商用客机客舱对于创造热舒适和健康的客舱环境至关重要。除了客舱几何形状和家具外,流场还取决于扩散器处的热流体边界条件。为了研究客舱内的流场,本文介绍了一种获取客舱几何形状、扩散器边界条件和流场的程序。本研究使用激光跟踪系统和逆向工程生成了 MD-82 飞机客舱的数字模型。尽管该系统的测量误差很小,但仍然需要近似和假设以减少工作量和数据量。几何模型还可用于轻松计算空间体积。采用热球风速计 (HSA) 和超声波风速计 (UA) 组合来获取扩散器处的速度大小、速度方向和湍流强度。测量结果表明,实际客舱内的流动边界条件相当复杂,速度大小、速度方向和湍流强度在不同缝隙开口之间差异很大。还使用 UA 测量 20 Hz 下的三维空气速度,这也可用于确定湍流强度。由于流动的不稳定性,应至少测量 4 分钟才能获得准确的平均速度和湍流信息。结果发现,流场速度低、湍流强度高。这项研究为验证计算流体力学 (CFD) 模型提供了高质量数据,包括客舱几何形状、扩散器边界条件和 MD-82 商用客机头等舱的高分辨率流场。 关键词:客机客舱;客舱几何形状;流场;实验;扩散器 41 42 1. 引言 43 44 商用客机客舱中的空气分布用于维持乘客和机组人员的热舒适度 45 和空气质量。这些空气分布可以控制空气温度和 46 空气速度场,并可以稀释气体和颗粒浓度。尽管 47 航空航天工业在过去 48 十年中已经改善了飞机客舱的热舒适度和卫生状况(Space et al.,2000),空气分配系统需要进一步改进。49
1 2 3 4 MD-82 商用客机头等舱的精确高分辨率边界条件和流场 6 7 刘伟 1 , 温继洲 1 , 赵江月 1 , 尹伟友 1 , 沈晨 1 , 赖代一 1 , 林朝欣 8 2 , 刘俊杰 1 , 孙河江 1,* 陈庆艳 1,3 9 10 1 天津大学环境科学与工程学院,天津 300072,11 中国 12 2 波音民用飞机环境控制系统,华盛顿州埃弗里特 98203,美国 13 3 普渡大学机械工程学院,印第安纳州西拉斐特 47907,美国 14 15 * 电子邮件地址:sunhe@tju.edu.cn 16 17 摘要 18 19商用客机客舱对于创造热舒适和健康的客舱环境至关重要。除了客舱几何形状和家具外,流场还取决于扩散器处的热流体边界条件。为了研究客舱内的流场,本文介绍了一种获取客舱几何形状、扩散器边界条件和流场的程序。本研究使用激光跟踪系统和逆向工程生成了 MD-82 飞机客舱的数字模型。尽管该系统的测量误差很小,但仍然需要近似和假设以减少工作量和数据量。几何模型还可用于轻松计算空间体积。采用热球风速计 (HSA) 和超声波风速计 (UA) 组合来获取扩散器处的速度大小、速度方向和湍流强度。测量结果表明,实际客舱内的流动边界条件相当复杂,速度大小、速度方向和湍流强度在不同缝隙开口之间差异很大。还使用 UA 测量 20 Hz 下的三维空气速度,这也可用于确定湍流强度。由于流动的不稳定性,应至少测量 4 分钟才能获得准确的平均速度和湍流信息。结果发现,流场速度低、湍流强度高。这项研究为验证计算流体力学 (CFD) 模型提供了高质量数据,包括客舱几何形状、扩散器边界条件和 MD-82 商用客机头等舱的高分辨率流场。 关键词:客机客舱;客舱几何形状;流场;实验;扩散器 41 42 1. 引言 43 44 商用客机客舱中的空气分布用于维持乘客和机组人员的热舒适度 45 和空气质量。这些空气分布可以控制空气温度和 46 空气速度场,并可以稀释气体和颗粒浓度。尽管 47 航空航天工业在过去 48 十年中已经改善了飞机客舱的热舒适度和卫生状况(Space et al.,2000),空气分配系统需要进一步改进。49
I. 引言 我们展示了一种基于在读卡器/卡交易过程中测量电谐振和载波谐波能量来识别单个射频识别 (RFID) 卡的方法。该方法依赖于精确的放置,实际上可以通过为 RFID 卡配备合适的夹具来实现。我们表明,对于所研究的测试样本,通过测量电谐振,我们可以以较低的误差识别属于相同或不同卡模型的单个卡。如果我们同时考虑测量电谐振和载波谐波能量,则该误差会进一步降低。我们的目标是表明,区分 RFID 卡的根本差异(例如不同的电路布局、不同的电路元件尺寸以及电路元件制造公差内的变化)可以通过电磁测量来测量并量化以创建电磁信号。这种识别电磁特征的能力可能有利于安全和保障[1],并且可以与数字设备标识符配对以检测伪造卡[2]。基于电磁测量识别电子设备并不是什么新鲜事,但之前的努力通常集中在雷达、手机、无线局域网 (WLAN) 和蓝牙等其他技术的背景下。军方已经追踪敌方无线电发射器,
摘要 本报告涉及坐标测量机 (CMM) 系统误差行为的建模和估计。我们描述了这些参数误差的两类模型,基于轴与轴行为构建的运动学模型和可以模拟任何可重复误差行为的更通用的经验模型。然后,我们开发了一个全面的数学模型,用于根据标准工件(例如球孔板)的测量来确定 CMM 的参数误差,并描述了从此类数据确定相对无偏和有效参数误差估计的算法。这些算法已在软件中实现,经过设计,可以满足任何参数误差模型、球板几何形状和测量策略的需求。该软件还计算拟合参数和相关量的标准不确定度。我们在数值模拟中使用该软件来分析测量策略在统计精度 Gf.parametric 6r.r.er.estimates 方面的有效性。AUmerical-expeRlBent& 表明,采用精心设计的策略,仅使用有关球板的最少量的校准信息就可以提供参数误差的准确估计,但其他设计或估计器可能会给出较差和/或有偏差的估计。